

Antigen	H (ISBT No. 18001) / CD 173	International Blood Group Reference Laboratory 500 North Bristol Park Northway
Clone	BRIC 198	Filton Bristol BS34 7QH
Product Code	9420	Protein Development and Production Unit
Immunoglobulin Class	Mouse IgG1, kappa light chain	Tel: +44 (0)117 921 7500 Fax: +44 (0)117 912 5796 Website: http://ibgrl.blood.co.uk Email: enquiries.IBGRL@nhsbt.nhs.uk

Antigen Description and Distribution

H antigens are carried on the non-reducing termini of the carbohydrates of glycoproteins and glycolipids. The H determinant structure is Fuc(α 1-2) Gal(β 1)-R. Type 1 and type 2 H (CD 173) are determined by the subterminal (peripheral core) carbohydrate sequence. In H type 1 it is Fuc (α 1-2) Gal(β 1-3) GlcNAc, in H type 2 it is Fuc(α 1-2) Gal(β 1-4) GlcNAc. H is the precursor of the A and B histo-blood group antigens, which are formed by the addition of GalNAc(α 1-3) or Gal(α 1-3) respectively, to the galactose of H¹. In man, H active substances are found on the erythrocytes, cells and tissues, and in the body fluids, linked to lipids (glycosphingolipids) or to proteins (glycoproteins). In various animals, H antigens occur in the cells and tissues, but not generally on erythrocytes. The synthesis of H type 1 and H type 2 in man in different tissues is controlled by either of the two linked genes Se and H, which code for 2-fucosyl transferases².

Clone

BRIC 198 was made in response to immunisation with group O erythrocytes. In haemagglutination tests it failed to react with Oh (Bombay) erythrocytes, and reacted more weakly than normal with A1 erythrocytes. BRIC 198 was absorbed by Synsorb H type 2, but not H type 1, Le^a, Le^b, A or B Synsorbs. BRIC 198 (MH1) was used in a workshop for glycomapping of the specificities of Lewis antibodies where it was shown that BRIC 198 cross reacted with Le^b and Le^y antigens³.

References

- 1. Clausen H, Hakomori S. (1989) Vox Sang. 56 1 20 (Review).
- 2. Oriel R, et al (1986) Vox Sang 51 161 171 (Review).
- 3. Williams E *et al.* (2016) Transfusion 56 (2):325-33. Glycomapping the fine specificity of monoclonal and polyclonal Lewis antibodies with type-specific Lewis kodecytes and function-spacer-lipid constructs printed on paper.