

Indications for LDLT in paediatrics; Do we need to rethink

Tassos Grammatikopoulos

Living Donor Liver Allocation Policy

Claude content

Non-Directed Altruistic (NDAD)

- Donation to UK transplant list
- No genetic/emotional relationship
- Offered to local centre first
- Anonymity required pre-surgery
- Can break anonymity post-surgery with consent

Directed Altruistic (DAD)

- Genetic relationship, no emotional bond
- No pre-existing relationship before need identified
- Requires HTA approval
- No evidence of coercion or reward

- Blood relative of recipient
- Emotional relationship (spouse, partner, friend)
- If recipient unavailable, redirected to list
- Private sector considerations apply

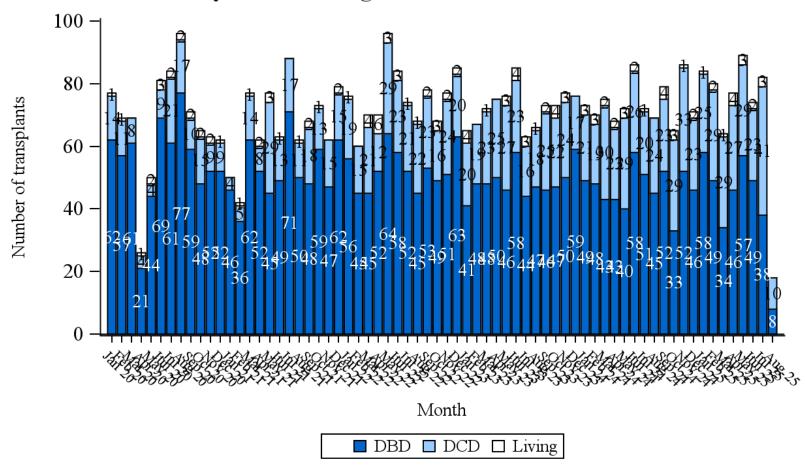
Domino Liver

- Currently in development
- Outside formal allocation process
- May use for patients outside standard criteria
- Recorded as 'Domino Donor' with NHSBT

1st Paed LRLT Sir Roy Calne, 1984

Indications for LT 2020

Chronic liver disease


- •-Biliary atresia
- -α-1-antitrypsin deficiency
- -Autoimmune liver disease
- -Sclerosing cholangitis (neonatal, primary, autoimmune)
- -Caroli's syndrome and other liver ciliopathies
- -Wilson's disease
- -Cystic fibrosis
- -Progressive familial intrahepatic cholestasis (all types)
- •-Bile acid synthesis disorders
- •-Alagille syndrome
- -Glycogen storage disease types 1, 3 and 4
- -Tyrosinaemia type 1
- Graft versus host disease
- •-Sickle cell disease
- •-Sinusoidal obstruction syndrome
- -Budd-Chiari syndrome
- Cryptogenic cirrhosis
- Intestinal Failure Associated Liver Disease
- •-Any aetiology leading to portal hypertension, hepatopulmonary syndrome or portopulmonary hypertension

Liver tumours

- -Unresectable hepatoblastoma (without active extrahepatic disease)
- -Unresectable benign liver tumours with disabling symptoms

- Metabolic liver disease with life-threatening extrahepatic complications
- Citrullinemia
- Transaldolase deficiency
- Arthrogryposis-renal dysfunction-cholestasis syndrome
- Crigler-Najjar syndrome type 1
- Urea cycle defects
- Hypercholesterolaemia
- Organic acidaemias
- Primary hyperoxaluria
- Fatty acid oxidation defects
- Congenital Disorders of Glycosylation (CDG)
- Inherited disorders of complement causing atypical haemolytic uraemic syndrome
- Molybdenum cofactor deficiency
- Congenital liver vascular malformations

Figure 3 Number of liver transplants performed in the UK, by donor type, 1 January 2020 to 11 August 2025

UK Liver Transplant list

UK Liver Tx list

Figure 14 Number of paediatric patients on the liver transplant list at the end of each month, January 2020 - 14 August 2025

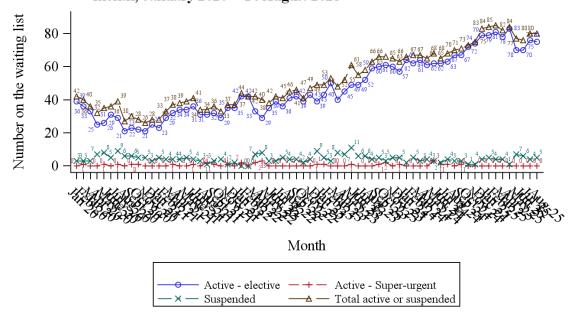
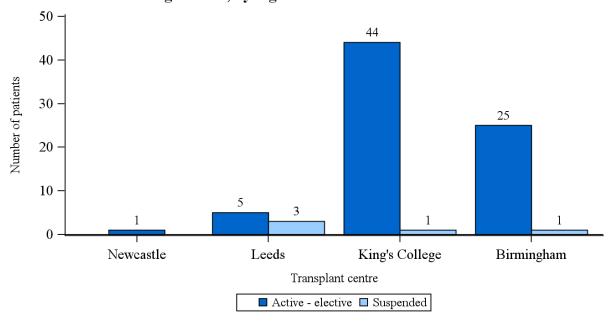



Figure 16 Total number of paediatric patients on the elective UK liver transplant list on 14 August 2025, by registration status

Table 2 Clinical outcomes.	
Variable	Result
Survival, %	
Patient	
Absolute	95.7
1-yr actuarial	97.8
5-yr actuarial	95.1
10-yr actuarial	95.1
Graft	
Absolute	93.2
1-yr actuarial	100
5-yr actuarial	97.0
10-yr actuarial	77.6

Clinical and histological outcomes following living-related liver transplantation in children

Nikesh Dattani^a, Alastair Baker^{a,*}, Alberto Quaglia^b, Hector Vilca Melendez^b, Mohamed Rela^b, Nigel Heaton^b

Table 1 Recipient and donor demographics.				
Variable	Result			
Recipient				
Sex (M/F)	30/16			
Age (yr), mean (range)	2.4 (0.5-11)			
Weight (kg), mean (range)	11.0 (3.7–32.3)			
Primary liver disease, n (%)				
BA	24 (52.1)			
Metabolic	6 (13.0)			
Hepatoblastoma	6 (13.0)			
PFIC	5 (10.9)			
Other	5 (10.9)			
Presentation, n				
Chronic liver disease	41 (89.1)			
Fulminant hepatic failure	3 (6.5)			
Re-transplantation	2 (4.3)			
Pre-transplant condition, n (%)				
At Home	26 (56.5)			
At Hospital	12 (26.1)			
In ICU	4 (8.7)			
Missing	4 (8.7)			

LDLT CONTRAINDICATED CONDITIONS (High Risk)

Evaluation of living donors for hereditary liver disease (siblings, heterozygotes)

Mureo Kasahara^{1,*}, Johnny C. Hong², Anil Dhawan³

Disease	Inheritance	Prevalence	Indication for LT	Donor Risk	Outcome	Limitation
Ornithine Transcarbamylase Deficiency (OTCD)	X-linked	1 in 50,000	Most common metabolic indication; refractory hyperammonemia	Heterozygous mothers: 18% risk hyperammonemia from skewed X-inactivation	transplant	CONTRAINDICATED: Heterozygous mothers unsuitable donors
Protein C Deficiency	Autosomal recessive	1 in 20,000	Life-threatening thrombosis/hemorrhage in neonates	Heterozygous parents have borderline low protein C activity	aggressive thromhonronhylaxis and	CONTRAINDICATED: Significant thromboembolic risk
Familial Hypercholesterolemia	Autosomal dominant	1 in 160,000-300,000	Severe cardiovascular risk, poor response to statins	Long-term cardiovascular disease risk in heterozygous donors	3 cases reported; both donors and recipients need ongoing cholesterol drugs	MARGINAL: May induce premature atherosclerosis
Acute Intermittent Porphyria	Autosomal recessive	1 in 20,000	Life-threatening acute attacks, liver failure	50% reduction in porphobilinogen deaminase activity	One case had recurrence 4 years post-transplant	CONTRAINDICATED: Genetic testing mandatory
Erythropoietic Protoporphyria	Autosomal recessive	1 in 50,000-75,000	Liver failure, photosensitivity	Decreased ferrochelatase activity in heterozygotes	3 cases reported, 1 death from cerebral herniation	CONTRAINDICATED: Heterozygous relatives unsuitable
Alagille Syndrome	Autosomal dominant	1 in 100,000	End-stage liver disease from bile duct paucity	Asymptomatic parents may have intrahepatic bile duct abnormalities	Poor prognosis if insufficient biliary drainage	REQUIRES: MRCP, liver biopsy, genetic studies
HLA Homozygous Donors		3.2% in Japan	Any indication	Significantly increased graft-versus-host disease risk	Poor prognosis with GVHD	ABSOLUTE CONTRAINDICATION

LDLT INDICATED CONDITIONS (Low Risk)

Disease	Inheritance	Prevalence	Indication for LT	Donor Considerations	Outcome	Genetic Testing Required
Wilson's Disease	Autosomal recessive	1 in 40,000	Acute liver failure, decompensated chronic disease	Heterozygous carriers asymptomatic; 50% have low ceruloplasmin	Excellent: 75.8% survival at 30 years	NO
Methylmalonic Acidemia (MMA)	Autosomal recessive	1 in 69,000	Metabolic decompensation, poor quality of life	Heterozygous donors have acceptable enzyme activity	85.2% survival at 10 years; metabolic improvement	NO
Propionic Acidemia (PA)	Autosomal recessive	1 in 240,000	Recurrent metabolic crises	Partial enzyme correction sufficient	Stabilized metabolite levels, improved protein tolerance	NO
Alpha-1 Antitrypsin Deficiency	Autosomal recessive	1 in 5,000	Progressive liver disease, risk of cirrhosis	May have complicated post- transplant course	Normal A1AT levels achieved; 89.1% survival at 20 years	NO
Crigler-Najjar Syndrome Type 1	Autosomal recessive	1 in 1,000,000	Risk of kernicterus from unconjugated bilirubin	Heterozygotes have low but sufficient UDP-glucuronyl transferase	8 cases reported, 7 excellent outcomes (1 aspiration death)	NO
Primary Hyperoxaluria Type 1	Autosomal recessive	1 in 120,000	Progressive renal failure from oxalate stones	AGT activity 30-77% of normal in heterozygotes	Excellent recipient survival, no donor symptoms	NO
Maple Syrup Urine Disease	Autosomal recessive	1 in 185,000	Poor metabolic control, recurrent crises	Parents inevitably carriers; normal BCKDH activity sufficient	22/24 patients well; unrestricted diet possible	NO

Living Donor Liver Transplantation for Pediatric Wilson's Disease-related Acute Liver Failure—Hard Work With High Rewards

Somashekara H. Ramakrishna *,†, Vellaichamy Katheresan ‡, Mohan B. Kasala §, Karnan Perumal §, Selvakumar Malleeswaran †, Joy Varghese ¶, Rajanikanth V. Patcha ‡, Prashant Bachina #, Poushya S. Madhavapeddy #, Mettu S. Reddy ‡,***

- Patient Characteristics
- 53 children studied: 28 with Wilson's Disease Acute Liver Failure (WD-ALF), 25 with chronic presentation (WD-CLD)
- WD-ALF patients were younger (8.5 vs 10.5 years), had higher PELD scores (35 vs 20), and higher King's New Wilson Index (15 vs 9)
- 2. Clinical Presentation Differences
- WD-ALF patients
- 86% had ongoing hemolysis vs 28% in chronic cases
- 64% were encephalopathic vs 4%
- required more intensive pre-transplant support

- Benefits & Indications
- 3. Curative Treatment
- LDLT provides complete cure for Wilson's disease with excellent long-term outcomes
- All survivors had good graft function without neurological sequelae at follow-up
- 4. Emergency Life-Saving Option
- For WD-ALF patients, liver transplantation is often the only life-saving option as medical therapy (including therapeutic plasma exchange) alone has limited success

ORIGINAL ARTICLE

Outcomes of pediatric living donor liver transplantation using steatotic grafts: expanding the donor pool for rising MASLD prevalence

Jie Li¹ · Yixiao Pan¹ · Yefeng Lu¹ · Xinye Zhu¹ · Jiahao Ge¹ · Siyuan Tang¹ · Jie Zhao¹ · Mei Long¹ · Xiaochen Bo¹ · Yiging Zhang¹ · Ping Wan¹ · Kang He¹ · Taihua Yang¹ ⑤ · Qiang Xia^{1,2,3} ⑥

- Study Overview
- Large cohort: 151 pediatric recipients analyzed from 905 total cases (2019-2021)
- Classification: Donors grouped by steatosis severity Normal (<5%), Mild (5-33%), Moderate-to-severe (>33%)
- Rationale: Rising MASLD prevalence necessitates expanding donor pool

Hepatology International https://doi.org/10.1007/s12072-025-10851-1

ORIGINAL ARTICLE

Outcomes of pediatric living donor liver transplantation using steatotic grafts: expanding the donor pool for rising MASLD prevalence

Jie Li¹ · Yixiao Pan¹ · Yefeng Lu¹ · Xinye Zhu¹ · Jiahao Ge¹ · Siyuan Tang¹ · Jie Zhao¹ · Mei Long¹ · Xiaochen Bo¹ · Yiqing Zhang¹ · Ping Wan¹ · Kang He¹ · Taihua Yang¹ · Qiang Xia^{1,2,3}

Early Outcomes - Generally Safe:

- No primary non-function (PNF) cases in any group
- No significant differences in liver function markers (ALT, AST, bilirubin, INR)
- Similar ICU stay and hospitalization duration across groups
- Initial poor function rates not significantly different

Survival Outcomes:

- 1-year survival: Normal 94.1%, Mild 95.9%, Moderate-severe 77.8%
- 3-year survival: Normal 92.6%, Mild 95.9%, Moderate-severe 77.8%
- While numerically lower for severe steatosis, differences not statistically significant

Outcomes

Significant Complications

Higher Rejection Risk:

Rejection rates: Normal 1.5%, Mild 9.5%, Moderate-severe 22.2% (p=0.018)

Most concerning finding - significantly elevated despite comparable immunosuppression levels

Other Complications:

Increased gastrointestinal bleeding in moderate-severe group

Higher CMV infection rates in steatotic graft recipients

No significant differences in biliary or vascular complications

- Clinical Implications
- Feasibility:
- Steatotic grafts can be used successfully in pediatric transplantation
- Careful donor selection and enhanced monitoring essential
- Particularly valuable given organ shortage
- Management Considerations:
- Enhanced immunosuppressive monitoring required
- Vigilant postoperative surveillance for rejection
- Risk-benefit evaluation crucial for each case

LONG-TERM OUTCOME OF LIVING RELATED LIVER TRANSPLANTATION FOR PATIENTS WITH INTRAPULMONARY SHUNTING AND STRATEGY FOR COMPLICATIONS^{1,2}

Egawa, Hiroto^{3,7}; Kasahara, Mureo³; Inomata, Yukihiro³; Uemoto, Shinji³; Asonuma, Katsuhiko³; Fujita, Siro³; Kiuchi, Tetsuya³; Hayashi, Michihiro³; Yonemura, Toshiya⁴; Yoshibayashi, Muneo⁴; Adachi, Yasuhiko⁵; Shapiro, James A. M.⁶; Tanaka, Koichi³

- Benefits
- Reduced waiting time No need for deceased donor
- **Timing flexibility** Can schedule when recipient is optimal
- Better organ quality Fresh, healthy liver tissue
- Improved outcomes Shorter ischemia time
- HPS resolution- All survivors showed improvement
- Long-term survival 62% survival rate in HPS patients

- Risks & Complications
- Wound infection 66-80% incidence (higher in severe HPS)
- Biliary complications 33% rate (vs 13.9% overall)
- Portal vein thrombosis 20% in severe HPS
- Intracranial complications 20% in severe HPS
- Donor morbidity Risk to healthy donor
- Technical complexity Requires expertise
- 1yr Survival Outcomes by HPS Severity
- Mild HPS:80%
- **Moderate HPS:** 66.7%
- Severe HPS:48%

Domino LT

Domino donor disease	Primary defect	Description of defect	De novo disease in domino recipient
Familial Amyloidotic Polyneuropathy	Transthyretin (TTR) ⁶	Abnormal transthyretin production resulting in systemic toxic accumulation ⁶	Yes, as early as 8–9 years after transplant ⁸⁻¹⁰
Maple Syrup Urine Disease	Branched chain ketoacid dehydrogenase (BCKDH) complex ¹¹	Abnormal systemic BCKDH activity results in toxic accumulation of branched chain amino acids ¹¹⁻¹³	Not reported ^{13,21}
Familial Hypercholesterolemia	Low density lipoprotein (LDL) receptor ²⁷	Abnormal LDL receptor function leads to high circulating cholesterol and subsequent deposition ²⁷⁻²⁹	Yes, potentially rapidly progressive ³⁰⁻³³
Primary Hyperoxaluria	Alanine:glycoxylate aminotransferase ²²	Hepatic oxalate production leads to progressive renal insufficiency ²²	Yes, renal failure within the first year ²³⁻²⁵
Methylmalonic acidemia	Methylmalonyl-CoA Mutase ³⁴	Toxic accumulation of valine, isoleucine, threonine, methionine, cholesterol, and certain fatty acids resulting in mitochondrial dysfunction ³⁴	Not reported ³⁴
Propionic acidemia	Propionyl-CoA carboxylase ³⁷	Toxic accumulation of valine, isoleucine, threonine, methionine, cholesterol, and certain fatty acids resulting in mitochondrial dysfunction ³⁷	Not reported on altered diet ³⁷
Ornithine Transcarbamylase Deficiency	Ornithine transcarbamylase ^{35,36}	Inability to convert nitrogenous waste into urea ^{35,36}	Yes, unless used as an auxiliary graft ^{35,36}
Crigler-Najjar syndrome	UDP-glucuronosyltransferase 1 ³⁶	Inability to conjugate bilirubin for excretion ³⁶	Not reported in auxiliary graft ³⁶

Domino transplantation for pediatric liver recipients: Obstacles, challenges, and successes

Vikram K. Raghu¹ | Peter D. Carr-Boyd² | James E. Squires¹ | Jerry Vockley³ | Nicolas Goldaracena⁴ | George V. Mazariegos²

Domino LT-Future directions

Expanding applications

- Cross-center sharing
- Novel approaches Cross-auxiliary domino transplantation and hepatocyte transplantation using explanted metabolic livers
- Broader indications

Gene Therapy Impact

- Future competition gene therapy
- Cost-effectiveness considerations

Research Priorities

- Long-term outcome studies
- Registry development

Commissioning Policy: Reimbursement of Expenses for Living Donors

Reference: NHS England A06/P/a

6 Living Organ Donors who are non-resident in the UK

There are cases when the individual wishing to donate is non-resident in the UK.

There are two categories of donors who live overseas:

- 1. Full-time residents (non-UK residents)
- 2. UK residents living temporarily overseas (e.g. for work or personal reasons)

Future perspectives

- Expanding indications
- NAFLD
- Living related LT or LKTx
- Domino
- Genotype-phenotype associations
- It does NOT have to be a parent!
- Need to work collectively with professionals, charities, patient groups and NHS

