

Significance of H&I and Impact on Organ Recipients

Deborah Pritchard Consultant Clinical Scientist

> Welsh Transplant Laboratory North Bristol NHS Trust UK NEQAS for H&I

Contents

- What is HLA?
- Why is it important
 - HLA Matching
 - Sensitisation to HLA
 - Donor and recipient crossmatching
- Questions

What are HLA Types?

- HLA types (tissue types) are markers found on almost all cells of the body
- Includes cells that make up your tissues and organs
- In blood they are found on white blood cells and platelets, but not on red blood cells
- Play an important role in the immune system

What determines HLA Type?

- HLA markers are determined by DNA
- Everyone has two sets of HLA markers
- Inherit 1 set from each parent
- 1 in 4 chance of siblings being matched

3
862
Cw9
DR13
DQ6

What are HLA types?

- HLA types can be defined at different levels
 - Resolution
- Dog
- Spaniel
- Cocker Spaniel
- Blue Roan

- Broad Specificity- Dog HLA-A2, A3; B5, B15; Cw1, Cw3; DR6, - DR52, -; DQ1,
- Split Specificity Spaniel HLA-A2, A3; B51, B62; Cw1, Cw10; DR13; DR52, -; DQ6,

Allele - Cocker Spaniel HLA-A*02:01, A*03:01; B*15:01, B*51:01; C*01:02, C*03:04; DRB1*13:01, DRB1*13:02; DRB3:03:01, - DQA1*01:02 DQA1*01:03; DQB1*06:04, DQB1*06:03; DPA1*01:03 DPA1*02:01;DPB1*04:02 DPB1:02:01

f 🛛 in 🔘 🗟 🕨

There are many different forms of HLA Types

Gono		Salit UI A	Broad ULA
Gene	Alleles	Split HLA	
	(Cocker)	(Spaniel)	(Dog)
HLA-A	6,192	28	11
HLA-B	7,431	60	30
HLA-C	6,067	18	16
HLA-DRB1	3,391	20	11
HLA-DQB1	1,232	9	4

Approx figures

A1	B5	B50(21)	Cw1	DR1	D Q1
A2	B7	B51(5)	CM2	DR103	D 02
A203	B703	B5102	Cing	DR2	DQ3
A210	B8	B5103	Cw4	DR3	D Q4
A3	B12	B52(5)	Cw5	DR4	DQ5(1)
A9	B13	B53	Cw6	DR5	DQ6(1)
A10	B14	B54(22)	Cw7	DR6	DQ7(3)
A11	B15	B55(22)	Cive	DR7	DQ8(3)
A19	B16	B56(22)	Cm9(m3)	DRS	DQ9(3)
A23(9)	B17	B57(17)	Cw10(n3)	DR9	
A24(9)	B18	B58(17)		D R 10	
A2403	B21	B59		DR 11(5)	
A25(10)	B22	B60(40)		DR 12(5)	
A26(10)	B27	B61(40)		DR 13(6)	
A28	B2708	B62(15)		DR 14(6)	
A29(19)	B35	B63(15)		DR1403	
A30(19)	B37	B64(14)		DR1404	
A31(19)	B38(16)	B65(14)		DR 15(2)	
A32(19)	B39(16)	B67		DR 16(2)	
A33(19)	B3901	870		DR 17(3)	
A34(10)	B3902	B71(70)		DR 18(3)	
A36	B40	B72(70)			
A43	B4005	B73		D R51	
A66(10)	B41	B75(15)		D R52	
A68(28)	B42	B76(15)		D R53	
A69(28)	B44(12)	B77(15)			
A74(19)	B45(12)	B78			
A80	B46	B81			
	B47	B82			
	B48				
	B49(21)				

What are HLA Types for?

- Signal potential infection to produce immune response
- Acts like a flag on the cell surface
 - Indicate to the immune system whether a response is needed

Healthy cell - No response

Infected cell – Immune Response

- Transplant situation
 - Differences in patient and donor tissue types = immune response = rejection

HLA Type Matching / Mismatching

• HLA matching reduces the number of differences between donor and recipient

Donor	A1	A2	B7	B8	DR3	DR4	
Recipient							A, B, DR Mismatch Grade
Α	A1	A2	B7	B8	DR3	DR4	000
В	A1	A3	B7	B8	DR3	DR4	100
С	A1	A9	B5	B8	DR3	DR4	110
D	A3	A9	B5	B8	DR3	DR7	211

Collaborative Transplant Study Data – HLA matching 2005-2014

We observed a 71 % increase in death censored graft failures from 0 to 6 HLA mismatches and Cox multivariate analysis showed a mean hazard ratio of 1.09 per HLA mismatch (95% CI 1.07–1.10, P < 0.001). The corresponding hazard ratio for patient survival was 1.04 (95% CI 1.03–1.06, P < 0.001).

- Kidney allocation scheme: prioritises well matched organs for younger patients
- Due to the number of different HLA types, 000 is difficult
- Frequency of HLA types varies in different ethnic/geographic populations
- Kidney allocation scheme: patients with rare HLA types get 'defaulted' to more common HLA types (e.g. A36 to A1) to match with more donors.
- HLA mismatched transplants are successful (immunosuppression)

What are Antibodies?

- Antibodies play a crucial role in our immune system
 - Help destroy bacteria and viruses
- Individuals can make HLA antibodies if exposed to different HLA types:
 - Pregnancy
 - Transfusion
 - Transplantation
- HLA antibodies are very significant in transplantation
- Antibodies can cause rejection, in worst case can cause irreversible damage to the transplant
- Patients with antibodies are "sensitised"

Transplant Compatibility

- Patient's with HLA antibodies can not receive a transplant from a donor with that HLA type
- The more HLA antibodies a patient has, the more difficult it will be to find a compatible donor
- If a patient is highly sensitised they become very difficult to transplant

H&I Laboratory Testing

- ğ
- Testing performed by specialist laboratories 21 in the UK
- HLA Typing
 - Patients and donors
- Antibody testing
 - Regular testing of patients

- Crossmatching
 - At time of (live/deceased) donor offer, to determine compatibility and immunological risk

Why do we HLA type?

- Assess matching and likelihood of receiving a well matched graft
- Matchability is a measure of how it difficult it is to match a patient with an organ donor in the UK.
 - This score takes into account a patient's blood type, HLA type and unacceptable antigens.
 - A patient with a score = 1 is defined as easy to match and a score = 10 as difficult to match.
- Assess compatibility at time of donor offer
- Prevent sensitisation (antibody production) poorly matched graft = high sensitisation high frequency single mismatch e.g. HLA-A2
- Assist donor selection e.g. in living donor transplant

HLA Antibody Testing

• Luminex

- Sensitive technique (Single Antigen Beads)
- Detects "weak" and "strong" antibodies (MFI)
- Not all detected antibodies are equal: "Weak" antibodies increase risk of transplant but it may still be possible to transplant
- Define HLA antibodies and agree unacceptable antigen listing
- Monitor regular intervals to check for increase or decrease
- Check after sensitisation events e.g. transfusion, graft nephrectomy, reduction of immunosuppression
- Avoid unexpected positive crossmatches
- Determine cRF (calculated reaction frequency) predict likelihood of receiving transplant

Crossmatching

- Specific test between a recipient and donor to determine compatibility
- Inform whether the transplant can go ahead
- Physical Laboratory Crossmatch
 - Mix donor cells and recipient serum to see if antibodies bind donor cells
 - Mimics the transplant in the laboratory
 - CDC
 - Detects strong antibodies
 - Flow Cytometry
 - Able to detect weak antibodies
 - Not HLA-specific
- Virtual Crossmatch
 - Use donor HLA-type and recipient antibody results to predict crossmatch resu
 - Quicker results
 - Reduces cold ischaemic time
 - Reduces laboratory workload on-call

Deceased Donor Kidney Transplantation

- Patients are registered on the National Transplant Register (NHSBT-ODT)
 - Any detected HLA antibodies are listed to ensure only compatible donors are offered to patients
 - Regular antibody testing while a patient is waiting for a transplant
- Deceased donors are HLA typed by the local tissue typing laboratory and reported to ODT (24/7 service)
 - ODT runs algorithm which identifies compatible recipients & kidney offered to the highest ranked patient
- Kidney is transported to patients transplant centre
 - Laboratory performs crossmatch as final compatibility check (24/7 service)
 - Provides clinical advice to medical team looking after patient

Live Donor Kidney Transplantation

- HLA type any potential live donors •
- Perform 'virtual' crossmatch to assess compatibility ٠
- Compatible donor proceed to laboratory crossmatch ٠

- Incompatible live donors •
 - Consider other live donors
 - **Deceased donor** •
 - Blood group or HLA incompatible transplant removal of antibodies prior to transplan
 - UK Living Kidney Sharing Scheme (LKSS)

2-way Exchange

3-way Exchange

Altruistic donor chain

UK Registry Data 2001 - 2012

Individual Compatibility Assessment

- Interpretation of the laboratory results and clinical advice is very individual to specific recipient/donor
- Patients discussed in multi-disciplinary team meetings
- Our role is to advise on the immunological compatibility
- H&I testing is just one part of the decision to transplant

Summary

- HLA types are markers on the cell surface involved in the immune system
- Lots of different HLA types
- HLA matching is prioritised, but compatibility (avoid antibodies) is crucial to stop transplant rejection
 - HLA typing, HLA antibody testing and crossmatching
- Patients with lots of HLA antibodies are difficult to transplant (highly sensitised)
- Not all HLA antibodies are equal: different level of risk
- H&I Labs advise on compatibility and immune risk, which are important factors in the decision to transplant

Any Questions?

 $f \otimes in 0 \otimes \mathbf{P}$