Histocompatibility and Immunogenetics in Transplantation

Characterising Donors and Recipients

Dr Olivia Shaw,
Clinical Transplantation Laboratory,
Viapath,
Guys Hospital.

ODT September 2019
Overview:

- What is HLA?
- Why is HLA important in Transplantation
 - HLA typing
 - Sensitisation to HLA and Unacceptable Antigen Definition
- HLA and the Patient Pathway
 - Incorporation of UKLDKSS
What is HLA?

- HLA (used to) = Human Leukocyte Antigen.
- Now just HLA – as they are expressed on more cells that Leukocytes.
- Encoded by the Major Histocompatibility Complex – MHC.
- In Humans - Genetic complex found on chromosome 6.
- Made of 3 regions – Class I, Class II and Class III.
• Routine transplantation and tissue typing concentrates on ‘Classical’ Class I (A, B and C) and II (DR, DQ, DP) only.
HLA Inheritance:

- The HLA genes come as an associated set of HLA – A, B, C, DR, DQ and DP – known as a haplotype.
- Everybody carries two haplotypes – generally different ones (heterozygous) but sometimes they are the same (homozygous).
- Each individual inherits one haplotype from each parent.
- Generally from two parents there are four possible combinations that can be inherited, so you have a 1:4 chance of having the same HLA type as your sibling.

![Diagram showing HLA inheritance](image)
What Do HLA Molecules do?

- Control and dictate your Immune Response.
- Present peptides to responder cells in the immune system – self or pathogen derived.
- Normally cells will only respond if they recognise both the HLA molecule (as self) and the peptide being presented.
Relevance to Transplantation:

- HLA is very variable between people.
- In transplantation the HLA molecules on the new organ are recognised by the immune system as being non-self (you) and treated like an infection to fight.

This can cause damage to the organ and rejection.
- The more similar the HLA of the recipient and donor the less the immune system recognises the organ as being different.
- A very well HLA matched deceased donor kidney gives a better outcome
- For living donors HLA is matching less important – fresh kidney with little time out of the body

Three important HLA in Transplantation - HLA-A, B and DR
HLA Diversity:

- Most diverse system in the Human genome.
- As of September 2019 within the worldwide population -

<table>
<thead>
<tr>
<th>Loci</th>
<th>Different Genes</th>
<th>Different Protein Products</th>
<th>Serological Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA A</td>
<td>5266</td>
<td>3552</td>
<td>28</td>
</tr>
<tr>
<td>HLA B</td>
<td>6537</td>
<td>4494</td>
<td>60</td>
</tr>
<tr>
<td>HLA C</td>
<td>5140</td>
<td>3359</td>
<td>16</td>
</tr>
<tr>
<td>Class I Total</td>
<td>16943</td>
<td>11405</td>
<td>104</td>
</tr>
<tr>
<td>HLA DRB</td>
<td>3171</td>
<td>2226</td>
<td>21</td>
</tr>
<tr>
<td>HLA DQB</td>
<td>1718</td>
<td>1151</td>
<td>9</td>
</tr>
<tr>
<td>HLA DPB</td>
<td>1449</td>
<td>960</td>
<td>None</td>
</tr>
<tr>
<td>Class II Total</td>
<td>6338</td>
<td>4337</td>
<td>30</td>
</tr>
</tbody>
</table>
Rapidly increasing variation identified:

http://hla.alleles.org
Tissue Typing:

- Term describing the identification of an individual's HLA molecules.
- Ideally to define which HLA molecules are expressed on the surface of a cell.
- All donors and recipients are HLA typed.
- Serological Typing – detection of HLA antigens on the surface of an individual's cells.
- Molecular Typing – detection of genes encoding the HLA type of an individual.
- Molecular typing is more sensitive and reliable.
Serological HLA Typing:

- Provides low resolution typing and is rarely a front line method.
- Patient cells are reacted against a panel of serum containing known antibodies to HLA molecules.
For Example:

- Patient cells are mixed with the panel of known serum.
- If a patient is HLA A2, these molecules are on the surface of their cells.
- If the serum contains antibody directed to HLA A2, this antibody will bind to the A2 molecules on the cell.
- Complement is then introduced.
- This will bind to antibody bound to the cells and cause cell death
- A stain is then added –
 - Live cells appear **green**
 - Dead cells appear **red**
No antibody bound
Cells alive: Type NOT HLA-A2

Antibody bound
Cells dead: Type = HLA-A2
Molecular (DNA) Typing:

- The majority of labs worldwide now use a variety of molecular HLA typing methods – Genotyping.
- Genotyping – identifies the alleles present at a given loci.
 - From this we infer the HLA molecules being presented
- Depending on the method can give low, medium or high resolution HLA typing.
- DNA extracted from nucleated cells in peripheral blood or spleen/lymph node
- Rapidly changing technology providing ever more high resolution HLA types - Not currently needed for solid organ transplantation.
- PCR-SSP, Luminex based PCR-SSO, RT-PCR, Sanger sequencing, NGS and more recently 3rd generation sequencing.
- Routinely assess HLA A, B, C, DRB 1/3/4/5, DQB, DQA and DPB
HLA typing by PCR-SSP

1. DNA amplification using sequence specific primers
2. Detection of amplified DNA by gel electrophoresis
3. Interpretation of results

HLA A*02, 32 B*07, 44 Bw4, 6 Cw*0501, 0702
HLA Nomenclature: 2010

HLA-A*
Identifies gene as belonging to HLA-A locus

HLA-A*03:
First field describes the allele family, often corresponds to the serological antigen

HLA-A*03:01:
Second field refers to the allele- assigned in order sequences were determined

HLA-A*03:01:01
Third field refers to a synonymous nucleotide substitution

“N” refers to non-expressed “null” genes

“L” refers to genes with low expression
National Transplant Database

- To aid easier allocation matching is performed on the serological HLA types.
- Serological equivalents must be assigned to molecular HLA types.

<table>
<thead>
<tr>
<th>Loci</th>
<th>Different Genes</th>
<th>Different Protein Products</th>
<th>Serological Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA A</td>
<td>5266</td>
<td>3552</td>
<td>28</td>
</tr>
<tr>
<td>HLA B</td>
<td>6537</td>
<td>4494</td>
<td>60</td>
</tr>
<tr>
<td>HLA C</td>
<td>5140</td>
<td>3359</td>
<td>16</td>
</tr>
<tr>
<td>Class I Total</td>
<td>16943</td>
<td>11405</td>
<td>104</td>
</tr>
<tr>
<td>HLA DRB</td>
<td>3171</td>
<td>2226</td>
<td>21</td>
</tr>
<tr>
<td>HLA DQB</td>
<td>1718</td>
<td>1151</td>
<td>9</td>
</tr>
<tr>
<td>HLA DPB</td>
<td>1449</td>
<td>960</td>
<td>None</td>
</tr>
<tr>
<td>Class II Total</td>
<td>6338</td>
<td>4337</td>
<td>30</td>
</tr>
</tbody>
</table>
HLA Conversion Chart for Organ Allocation

NATIONAL TRANSPLANT DATABASE
HLA CONVERSION CHART FOR ORGAN ALLOCATION
HLA Dictionary 2008 NOMENCLATURE April 2010

MATCHED ‘2 DIGIT BROAD’ SPLITS ‘2 DIGIT SPLIT’ ALLELE GROUP
ON Allele OR ASSOCIATED Allele SPECIFICITIES

A1 A*01

A2 A*02
 A203
 A210
 A*02:02
 A*02:03
 A*02:03:01
 A*02:03:02
 A*02:03:03
 A*02:04
 A*02:03:05
 A*02:03:06
 A*02:03:07
 A*02:03:08
 A*02:10

A3 A*03

A9 A23
 A*23
 A24
 A*24
 A2403
 A*24:05
 A*24:19
 A*24:22
 A*24:10
 A*24:10:01
 A*24:10:02
 A*24:23
 A*24:33
HLA Matching/Mismatching:

- Deceased donor organ allocation in the UK is based on low resolution matching at HLA A, B and DRB.
- In part because these loci contribute the majority of the polymorphism seen.
- For each locus there can be 0, 1 or 2 mismatches – with 0 denoting matched and 2 denoting completely unmatched.
- The best match is a 000. The worst match is a 222.
- In general the better the match, the better the long term graft survival.

Donor

<table>
<thead>
<tr>
<th></th>
<th>HLA-A1, A2, B7, B8, DR3, DR4</th>
</tr>
</thead>
</table>

Recipient

<table>
<thead>
<tr>
<th></th>
<th>HLA-A1, A2, B7, B8, DR3, DR4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>211</td>
<td></td>
</tr>
</tbody>
</table>
Human Leukocyte Antigens – HLA

- HLA matching between donor and recipient improves kidney transplant survival

HLA-A+B+DR Mismatches
Deceased Donor, First Kidney Transplants 1990-2014
HLA Specific Antibodies:

- HLA specific antibodies are antibodies directed at non-self HLA.
- Can be directed at HLA Class I and II.
- HLA specific antibodies linked to rejection in Kidney, Pancreas, Heart, Lung and more recently Small Bowel and possibly also the Liver.
- The presence of donor HLA specific antibody is associated with poorer long term transplant survival.

Where possible we avoid transplantation of a donor organ expressing HLA to which a recipient produces Ab.

This is through the registration of ‘unacceptable antigens’.

Lachmann et al, Transplantation 2009
Routes to sensitisations:

- Prior exposure via Transplant, Pregnancy, Blood transfusion, Cage Fighting, First responders...
- Transplantation – rejection of a previous allograft can lead to generation of long-lived antibody response in >70% cases.
- Pregnancy - @20% of parous women produce HLA specific antibody.
- Transfusion – Red blood cell and platelet - reports of up to 40% of patients receiving multiple blood transfusion becoming sensitised.
- Approximately 50% of the waiting list have some antibody.
- Strength and breadth can vary over time so regular testing highly recommended.
- BTS Guidelines – Test every 3 months as a minimum, plus post sensitisation event.
HLA specific Antibody Detection:

- We use sensitive methods analysed in the context of patient history, including previous sensitising events and vaccination history.
- Most centres now routinely use Luminex bead based.
- ‘Solid Phase’ assay - Intact HLA molecules solubilised or purified from cell membranes, or recombinant HLA antigens, from transfected cell lines are immobilised onto a polystyrene bead.
- Screening for yes/no, through to highly sensitive single antigen for fine definition of specificity.
Luminex TECHNOLOGY
100 bead populations, uniquely identifiable by colouration with a combination of two dyes in different proportions

Bound antibody detected with a fluorescently labelled anti-human IgG antibody

Lasers excite internal dye and PE

HLA specific antibody binding reported as median fluorescence intensity (MFI) of the reporter signal

Fuggle & Martin, Transplantation 2008 86:384
Single Antigen Beads

Class I Single Antigen Screening

All the A23 and A24 coated beads are positive, indicating the presence of antibody specific for HLA A23 and A24.

Class II Single Antigen Screening

All the DR4 coated beads are weakly positive, indicating the presence of a weak DR4 specific antibody.

Median Fluorescence Intensity is represented on the Y axis

The HLA specificity represented by the bead is listed on the X axis and beads are ranked in order of reactivity, strongest first.
Unacceptable Antigens and Sensitisation:

- Generally these are HLA antigens to which a patient has antibody.
- May also include previous mismatches without antibody or partners mismatches for example.
- Once defined they are registered on the national transplant database as unacceptable.
- Patients who produce HLA specific antibody are referred to as ‘sensitised’.
- A measure of sensitisation is the ‘calculated reaction frequency’ or %cRF.
- Calculates the % of deceased donors in the past 10000 with which we would expect a positive crossmatch.
- 0% cRF being unsensitised and 100% cRF being highly sensitised.
The cRF% Calculator
Calculated HLA antibody Reaction Frequency

Sensitisation Calculator (cRF%)

Enter Blood Group

<table>
<thead>
<tr>
<th>Blood Group</th>
<th>Antibody Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B1, B2, B3, B4, B5</td>
</tr>
<tr>
<td>B</td>
<td>A1, A2, A3, A4, A5</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

Select ABO blood group

Add antibody specificities

Await cRF% result

87%

Super Broads

Broads with splits

Broads no splits

Splits
Antibody can be a major barrier to transplantation. Antibody detection and definition of unacceptable antigens is a balance between ensuring good outcomes and not limiting the chances of an offer.

Median wait to transplant for adult patients

<table>
<thead>
<tr>
<th>Calculated Reaction Frequency</th>
<th>Number of patients registered</th>
<th>Waiting time (days)</th>
<th>Median</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-84%</td>
<td>7917</td>
<td>963</td>
<td>942 - 984</td>
<td></td>
</tr>
<tr>
<td>85-94%</td>
<td>344</td>
<td>1577</td>
<td>1487 - 1667</td>
<td></td>
</tr>
<tr>
<td>95-99%</td>
<td>377</td>
<td>2138</td>
<td>1870 – 2406</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>164</td>
<td>2424</td>
<td>2072 – 2776</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>8802</td>
<td>1016</td>
<td>995 - 1037</td>
<td></td>
</tr>
</tbody>
</table>

Median wait to transplant for adult patients:
- **2½ years**
- **6½ years**
Crossmatching:

• This is the final compatibility test.
• One cell antibody screen
• Detects antibody in a patient specific to a given donor.
• Patient serum vs donor lymphocytes
 - Living donor PBLs
 - Deceased donor – PBL, Spleen or Lymph node
• Two main methods – CDC and Flow Cytometry
Complement Dependent Cytotoxicity Method

The Complement Dependent Cytotoxicity Test

1. Serum
2. Lymphocytes
3. Rabbit complement
4. Staining with ethidium bromide / acridine orange
5. Antibody binding: complement mediated cytotoxicity

No antibody binding: lymphocytes remain viable

Fuggle SV, and Martin S. Transplantation 86 (3): 384-390
Flow Cytometric Methods:

• Still cell based but reportedly up to 50 x more sensitive than CDC.
• Uses target donor derived lymphocytes
• Lymphocytes incubated with recipient sera.
• Ab bound to targets on test cells is detected through addition of a fluorescence labelled secondary Ab.
• This is then detected and quantified using a flow cytometer.
• Fluorescence in test compared to that in negative control and deviation from this assessed against predefined cut off to assign positive or negative result.
• Centre specific – based on clinical protocol, clinicians and historical transplant outcome data
• Screening methods now mean very few unexpected positive crossmatches.
• Important for deceased donors as reduces the cold ischaemia time.
1. Cells identified on size

2. T cells (CD3+) and B cells (CD19+) identified on fluorescence

3. Ab binding identified by fluorescence.
How does this define risk?

- Results of HLA typing, antibody screening history and crossmatching together help define the immunological risk of a potential transplant.
- Both current and historical results must be used together to aid assessment.

HYPER ACUTE REJECTION

<table>
<thead>
<tr>
<th>T cell CDC IgG</th>
<th>B-cell CDC IgG</th>
<th>T cell Flow IgG</th>
<th>B cell Flow IgG</th>
<th>Lumine Ab detection</th>
<th>Single antigen beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute humoral / cellular rejection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on - J Andrew Bradley, Craig Taylor, Cambridge, UK
Assessment Summary:

- Compatible blood group is necessary.
- HLA typing and matching – better the match the better the long term graft survival.
- HLA Antibody screening – avoid donors with HLA antigens to which there are pre-formed antibodies in the recipient.
- Crossmatching – avoid transplantation in the face of a positive crossmatch due to HLA specific antibody.
- These apply equally to deceased and living donation routes.
- For patients with incompatible but otherwise healthy living donors – what are the options?
Approx 20-30% of possible living donor transplants in the UK are prevented due to -

- Blood group incompatibility
- HLA antibody incompatibility
 - Positive crossmatch
- Poor HLA match

LKDSS now helps to improve the chances of transplant.
Multidisciplinary Team Flowchart

Presentation Clinic 1
HLA type, blood group & crossmatch

Antibody Compatible

Antibody Incompatible

Direct donation

MDT Discussion
Alternative donors / mismatch grades
Risk stratification
Antibody profile / Crossmatch result
Difficulty of antibody removal: titres
Urgency of transplant

UKLKSS
Evaluation of antibody profile
Remove specificities?
Evaluation of HLA-A,B,DR mismatch grade

Direct Ab Incompatible Transplant
Patient/donor demographics per matching run:
Patient HLA Sensitisation status per matching run

Ab profile amended
sensitised
unsensitised
Helping Patients Understand Their Chance of Transplant

Incompatible Pairs Living Donor Kidney Application

<table>
<thead>
<tr>
<th>Variable</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient Blood Group</td>
<td>A</td>
</tr>
<tr>
<td>Calculated Reaction Frequency</td>
<td>85-94</td>
</tr>
<tr>
<td>Donor Blood Group</td>
<td>O</td>
</tr>
<tr>
<td>ABOi TX with willing Donor†</td>
<td>Select</td>
</tr>
<tr>
<td>HLAi TX with willing Donor†</td>
<td>Select</td>
</tr>
<tr>
<td>Recipient Age</td>
<td>Select</td>
</tr>
</tbody>
</table>

Estimated Chance of Transplant

<table>
<thead>
<tr>
<th></th>
<th>Deceased Donor</th>
<th>NLDKSS</th>
<th>ABOi</th>
<th>HLAi</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Months</td>
<td><10%</td>
<td>41-50%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 Year</td>
<td>11-20%</td>
<td>71-80%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 Years</td>
<td>41-50%</td>
<td>>90%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Transplant Survival Rates

<table>
<thead>
<tr>
<th></th>
<th>Deceased Donor</th>
<th>NLDKSS</th>
<th>ABOi</th>
<th>HLAi</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Months</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 Year</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 Years</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Disclaimer: The information is provided for guidance only

†Low titre/Low DSA means acceptable for incompatible transplant. High titre/High DSA means unacceptable for incompatible transplant.

Note: NLDKSS chance of transplant is based on paired donation including short altruistic donor chains.

Chances of transplant through the NLDKSS could be increased by considering an antibody incompatible transplant within the scheme.

The UKLKSS is a valuable addition to a living donor transplant programme
– increased opportunity for highly sensitised patients
– enables better HLA matching between donors and recipients
Acknowledgements

Prof Susan Fuggle

NHS Blood and Transplant
Lisa Burnapp, Rachel Johnson, Lisa Mumford, Matthew Robb, Chloe Brown, Iain Harrison, Lin Shelper, David Clegg, Debbie West

University of Glasgow (matching algorithms)
David Manlove, Peter Biro, Gregg O’Malley, James Trimble

Transplant centres and referring renal units
Kidney Advisory Group
LDKT 2020 Strategy Implementation Group
Aisling Courtney (Chair) and members