

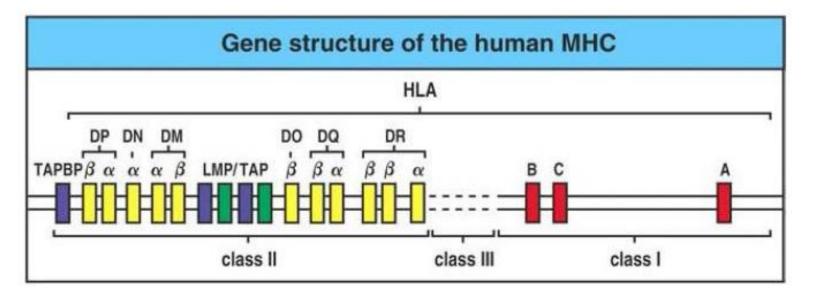
Histocompatibility and Immunogenetics in Transplantation

Characterising Donors and Recipients

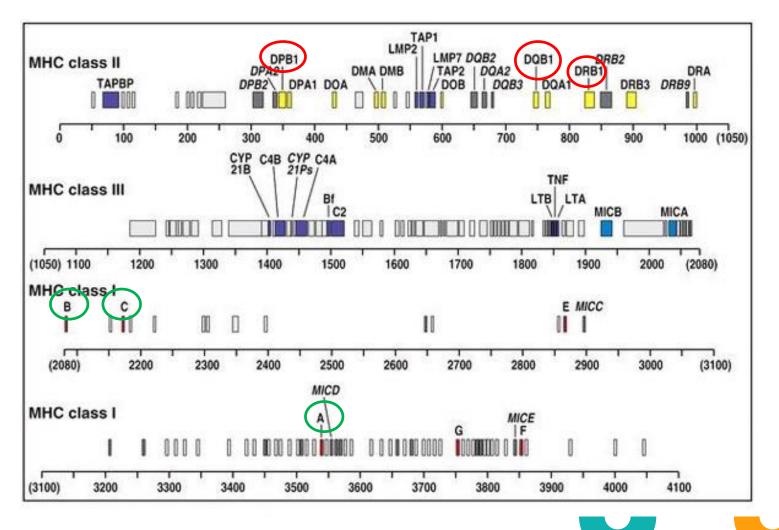
Dr Olivia Shaw, Clinical Transplantation Laboratory, Viapath, Guys Hospital.

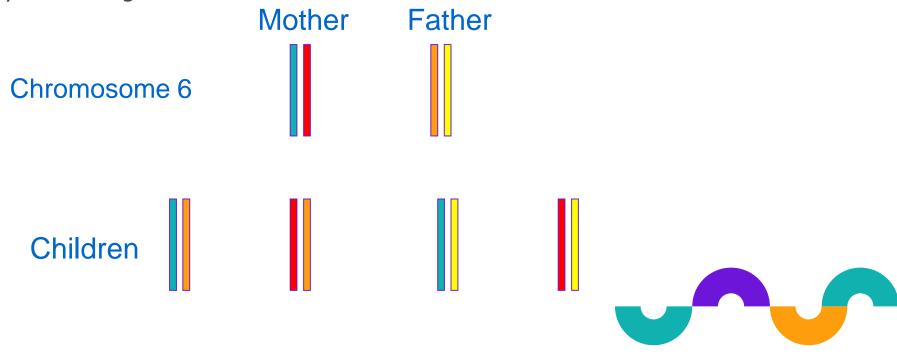
ODT September 2019

Overview:

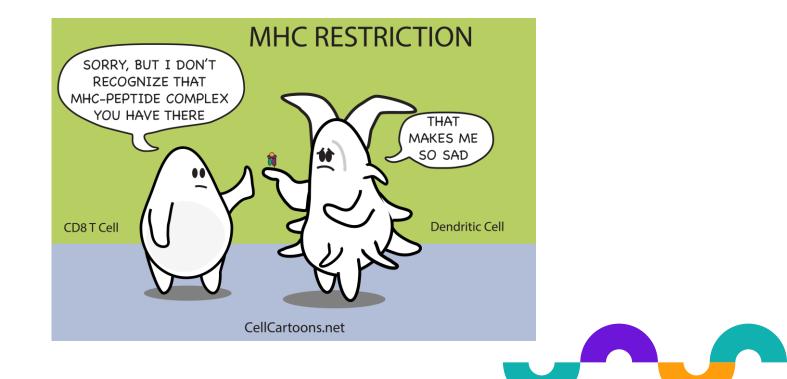

- What is HLA?
- Why is HLA important in Transplantation
 - HLA typing
 - Sensitisation to HLA and Unacceptable Antigen Definition
- HLA and the Patient Pathway
 - Incorporation of UKLDKSS

What is HLA?

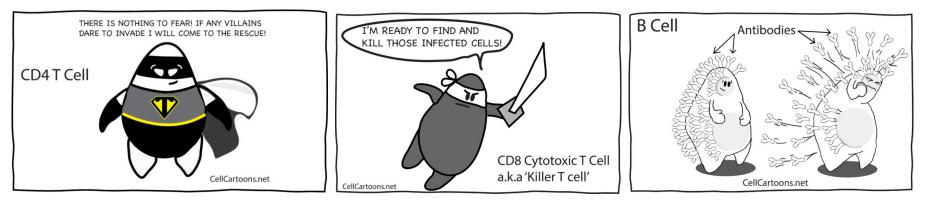

- HLA (used to) = Human Leukocyte Antigen.
- Now just HLA as they are expressed on more cells that Leukocytes.
- Encoded by the Major Histocompatibility Complex MHC.
- In Humans Genetic complex found on chromosome 6.
- Made of 3 regions Class I, Class II and Class III.


 Routine transplantation and tissue typing concentrates on 'Classical' Class I (A, B and C) and II (DR, DQ, DP) only.

HLA Inheritance:


- The HLA genes come as an associated set of HLA –A, B, C, DR, DQ and DP – known as a haplotype
- Everybody carries two haplotypes generally different ones (heterozygous) but sometimes they are the same (homozygous)
- Each individual inherits one haplotype from each parent.
- Generally from two parents there are four possible combinations that can be inherited, so you have a 1:4 chance of having the same HLA type as your sibling.

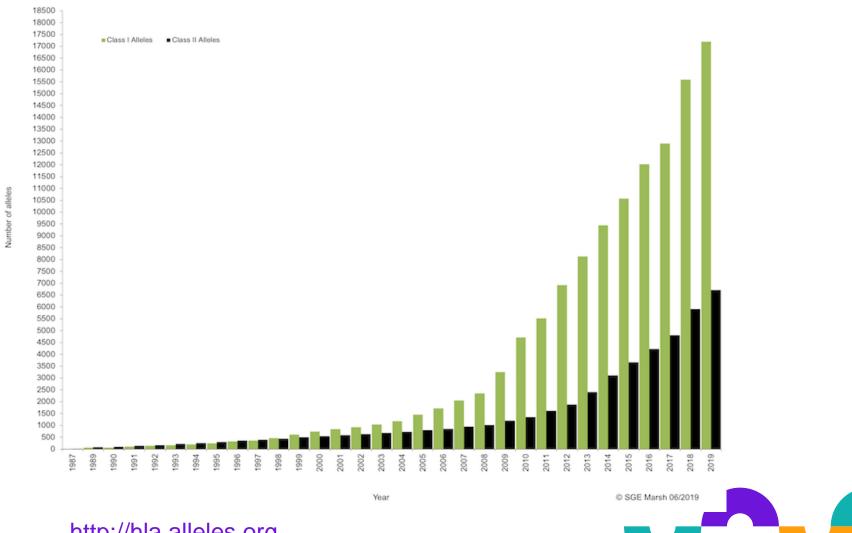
What Do HLA Molecules do?


- Control and dictate your Immune Response.
- Present peptides to responder cells in the immune system self or pathogen derived.
- Normally cells will only respond if they recognise both the HLA molecule (as self) and the peptide being presented.

Relevance to Transplantation:

- HLA is **very** variable between people.
- In transplantation the HLA molecules on the new organ are recognised by the immune system as being non-self (you) and treated like an infection to fight.

- This can cause damage to the organ and rejection.
- The more similar the HLA of the recipient and donor the less the immune system recognises the organ as being different.
- A very well HLA matched deceased donor kidney gives a better outcome
- For living donors HLA is matching less important fresh kidney with little time out of the body
- Three important HLA in Transplantation HLA-A, B and DR


HLA Diversity:

- Most diverse system in the Human genome.
- As of September 2019 within the worldwide population -

Loci	Different Genes	Different Protein Products	Serological Specificities
HLA A	5266	3552	28
HLA B	6537	4494	60
HLA C	5140	3359	16
Class I Total	16943	11405	104
HLA DRB	3171	2226	21
HLA DQB	1718	1151	9
HLA DPB	1449	960	None
Class II Total	6338	4337	30

Rapidly increasing variation identified:

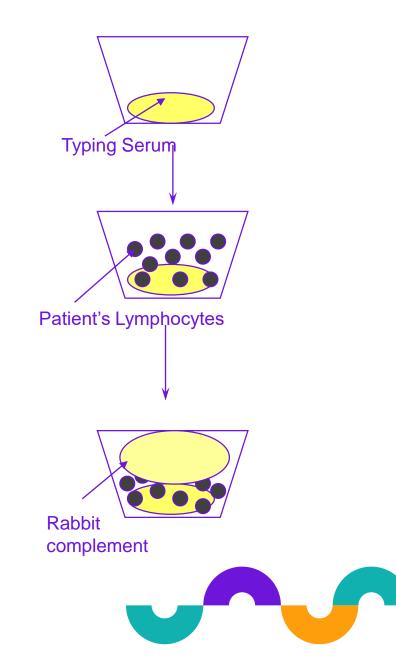
http://hla.alleles.org

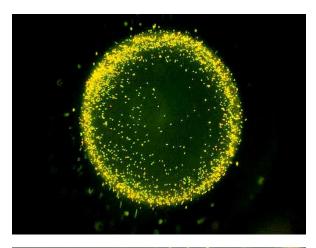
Tissue Typing:

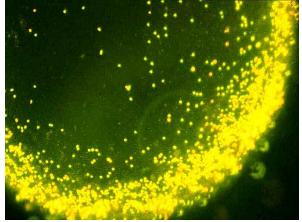
- Term describing the identification of an individuals HLA molecules.
- Ideally to define which HLA molecules are expressed on the surface of a cell.
- All donors and recipients are HLA typed.
- Serological Typing detection of HLA antigens on the surface of an individuals cells.
- Molecular Typing detection of genes encoding the HLA type of an individual.
- Molecular typing is more sensitive and reliable.

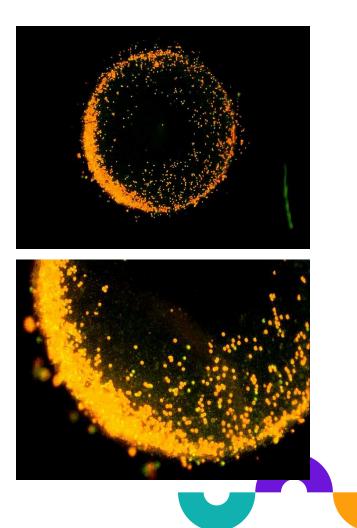
Serological HLA Typing:

- Provides low resolution typing and is rarely a front line method.
- Patient cells are reacted against a panel of serum containing known antibodies to HLA molecules.




For Example:


- Patient cells are mixed with the panel of known serum.
- If a patient is HLA A2, these molecules are on the surface of their cells.
- If the serum contains antibody directed to HLA A2, this antibody will bind to the A2 molecules on the cell.
- Complement is then introduced.
- This will bind to antibody bound to the cells and cause cell death
- A stain is then added Live cells appear green
 Dead cells appear red

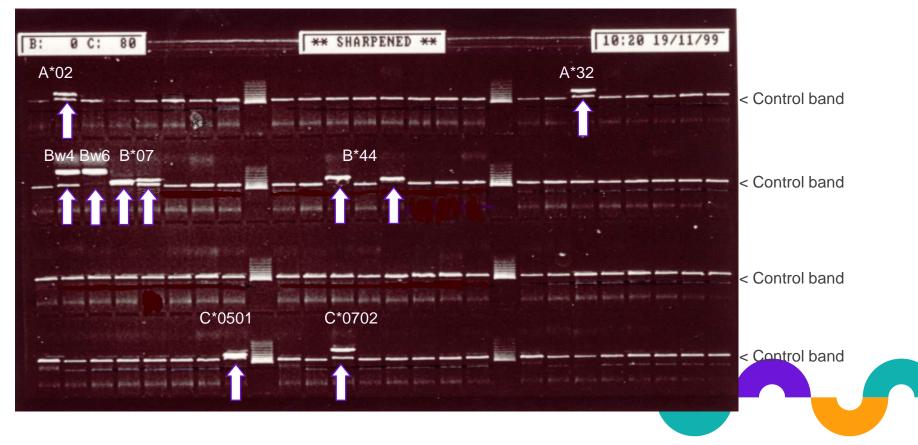


No antibody bound Cells alive: Type NOT HLA-A2

Antibody bound Cells dead: Type = HLA-A2

Molecular (DNA) Typing:

- The majority of labs worldwide now use a variety of molecular HLA typing methods – Genotyping.
- Genotyping identifies the alleles present at a given loci.
 - From this we infer the HLA molecules being presented
- Depending on the method can give low, medium or high resolution HLA typing.
- DNA extracted from nucleated cells in peripheral blood or spleen/lymph node
- Rapidly changing technology providing ever more high resolution HLA types ?Not currently needed for solid organ transplantation.
- PCR-SSP, Luminex based PCR-SSO, RT-PCR, Sanger sequencing, NGS and more recently 3rd generation sequencing.
- Routinely assess HLA A, B, C, DRB 1/3/4/5, DQB, DQA and DPB



HLA typing by PCR-SSP

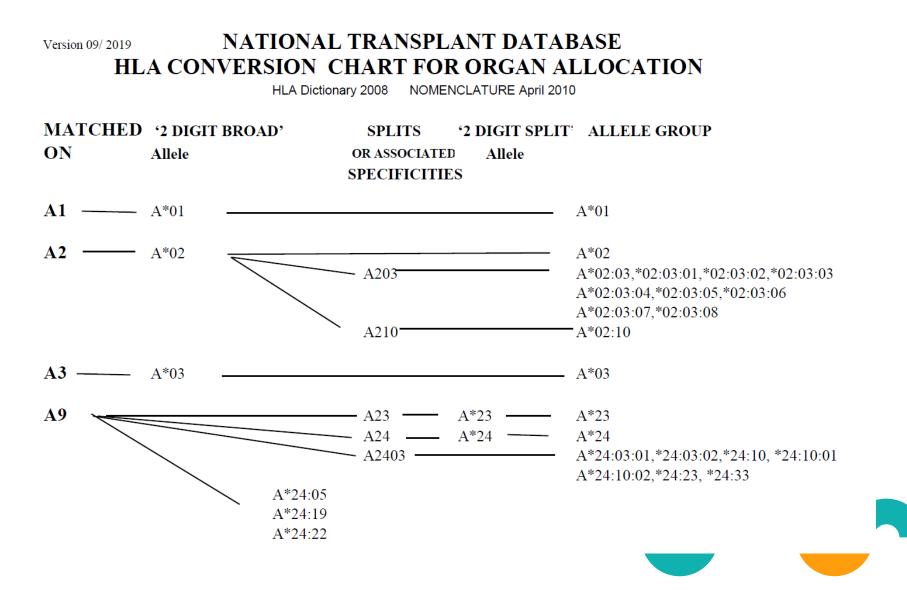
- 1. DNA amplification using sequence specific primers
- 2. Detection of amplified DNA by gel electrophoresis
- 3. Interpretation of results

HLA A*02, 32 B*07, 44 Bw4, 6 Cw*0501, 0702

HLA Nomenclature: 2010

- HLA-A* Identifies gene as belonging to HLA-A locus
- HLA-A*03: First field describes the allele family, often corresponds to the serological antigen
- HLA-A*03:01: Second field refers to the allele- assigned in order sequences were determined
- HLA-A*03:01:01 Third field refers to a synonymous nucleotide substitution
 - "N" refers to non-expressed "null" genes
 - "L" refers to genes with low expression

National Transplant Database


• To aid easier allocation matching is performed on the serological HLA types.

•Serological equivalents must be assigned to molecular HLA types

Loci	Different Genes	Different Protein Products	Serological Srecificities
HLA A	5266	3552	28
HLA B	6537	4494	60
HLA C	5140	3359	16
Class I Total	16943	11405	104
HLA DRB	3171	2226	21
HLA DQB	1718	1151	9
HLA DPB	1449	960	None
Class II Total	6338	4337	30

HLA Conversion Chart for Organ Allocation

HLA Matching/Mismatching:

- Deceased donor organ allocation in the UK is based on low resolution matching at HLA A, B and DRB.
- In part because these loci contribute the majority of the polymorphism seen.
- For each locus there can be 0, 1 or 2 mismatches with 0 denoting matched and 2 denoting completely unmatched.

100

110

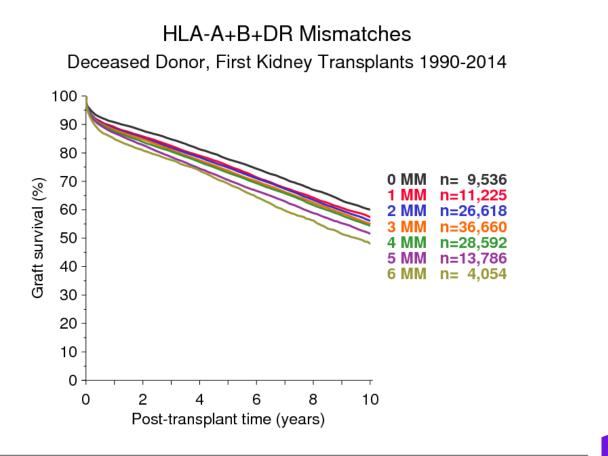
211

- The best match is a 000. The worst match is a 222.
- In general the better the match, the better the long term graft survival.

Donor

HLA-A1, A2, B7, B8, DR3, DR4

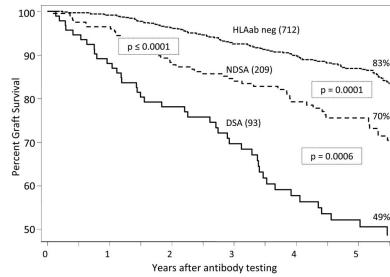
Recipient


HLA-A1, A2,	B7, B8,	DR3, DR4	000
	HLA-A1, A2,	HLA-A1, A2, B7, B8,	HLA-A1, A2, B7, B8, DR3, DR4

- B HLA-A1, A3, B7, B8, DR3, DR4
- C HLA-A1, A9, B5, B8, DR3, DR4
- D HLA-A3, A9, B5, B8, DR3, DR7

Human Leukocyte Antigens – HLA

 HLA matching between donor and recipient improves kidney transplant survival



K-21101-0816

viapath

HLA Specific Antibodies:

- HLA specific antibodies are antibodies directed at non-self HLA.
- Can be directed at HLA Class I and II.
- HLA specific antibodies linked to rejection in Kidney, Pancreas, Heart, Lung and more recently Small Bowel and possibly also the Liver.
- The presence of donor HLA specific antibody is associated with poorer long term transplant survival.

Lachmann et al, Transplantation 2009

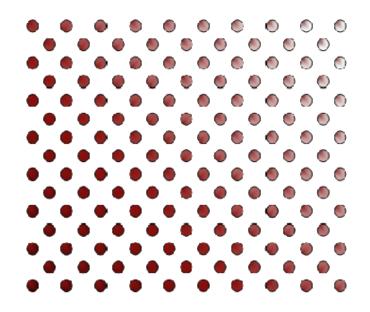
- Where possible we avoid transplantation of a donor organ expressing HLA to which a recipient produces Ab.
- This is through the registration of `unacceptable antigens'.

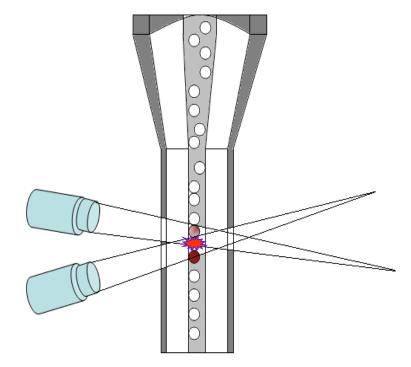
Routes to sensitsation:

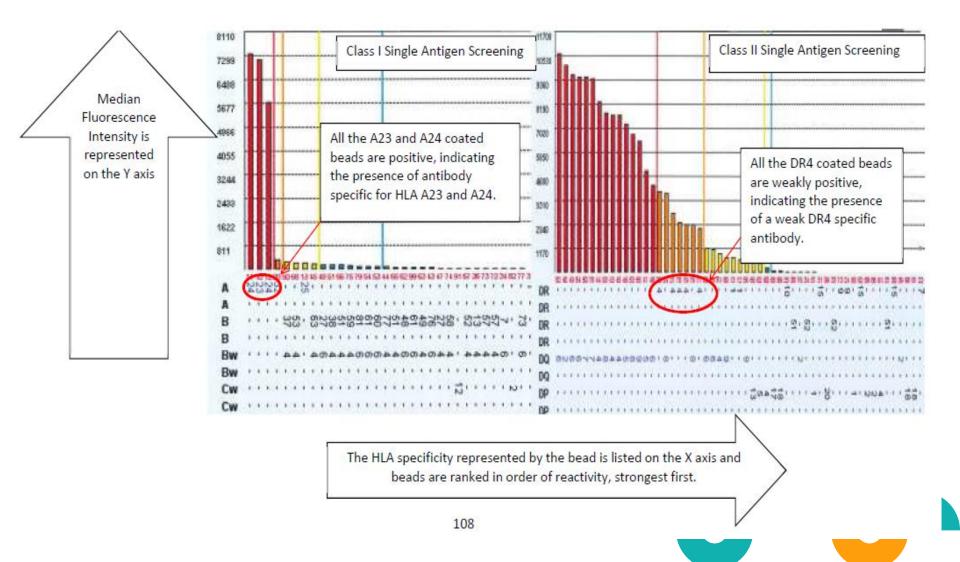
- Prior exposure via Transplant, Pregnancy, Blood transfusion, Cage Fighting, First responders...
- Transplantation rejection of a previous allograft can lead to generation of long-lived antibody response in >70% cases.
- Pregnancy @20% of parous women produce HLA specific antibody.
- Transfusion Red blood cell and platelet reports of up to 40% of patients receiving multiple blood transfusion becoming sensitised.
- Approximately 50% of the waiting list have some antibody.
- Strength and breadth can vary over time so regular testing highly recommended.
- BTS Guidelines Test every 3 months as a minimum, plus post sensitisation event.

HLA specific Antibody Detection:

- We use sensitive methods analysed in the context of patient history, including previous sensitising events and vaccination history.
- Most centres now routinely use Luminex bead based.
- 'Solid Phase' assay Intact HLA molecules solubilised or purified from cell membranes, or recombinant HLA antigens, from transfected cell lines are immobilised onto a polystyrene bead.
- Screening for yes/no, through to highly sensitive single antigen for fine definition of specificity.




Luminex TECHNOLOGY



100 bead populations, uniquely identifiable by colouration with a combination of two dyes in different proportions Bound antibody detected with a fluorescently labelled anti-human IgG antibody

Lasers excite internal dye and PE

HLA specific antibody binding reported as median fluorescence intensity (MEI) of the reporter signal

Unacceptable Antigens and Sensitisation:

- Generally these are HLA antigens to which a patient has antibody
- May also include previous mismatches without antibody or partners mismatches for example.
- Once defined they are registered on the national transplant database as unacceptable.
- Patients who produce HLA specific antibody are referred to as 'sensitised'.
- A measure of sensitisation is the 'calculated reaction frequency' or %cRF.
- Calculates the % of deceased donors in the past 10000 with which we would expect a positive crossmatch.
- 0% cRF being unsensitised and 100% cRF being highly sensitised.

The cRF% Calculator Calculated HLA antibody Reaction Frequency

	Se	nsitisation	Calculator (cRF%)					
Sensitisation (cRF%) 87%									
6176									
nter Blood Group 0	-								
		В		в		С		D	
A1 (Y)	B5		B21		CW1		DR1		
A2	B51		B49		CW2		DR2		
A203	B52		B50		CW3		DR15		
A210	B5102		B4005		CW9		DR16		
	B5103		B22		CW10 CW4		DR3		
A9 A23	B703		B54 B55		CW4 CW5		DR17 DR18		
A23 A24	B703 B8	\bigcirc	B56		CW5 CW6		DR18 DR4		
A2403	B0 B12	(Y)	B30		CW8 CW7		DR4 DR5		
A10	B12 B44		B2708		CW8		DR11		
A25	B45		B35		CW12		DR12		
A26	B13		B37		CW13		DR6		
A34	B14		B40	(\mathbf{y})	CW14		DR13		
A66	B64		B60	\mathbf{O}	CW15		DR14		
A11	B65		B61		CW16		DR1403		
A19	B15		B41		CW17		DR1404		
A29	B62		B42		CW18		DR7		
A30	B63		B46				DR8		
A31	B75		B47				DR9		
A32	B76		B48				DR10		
A33	B77		B53				DR103		
A74	B16		B59				DR51		
A28	B38		B67				DR52		
A68	B39		B70				DR53	\bigcirc	
A69 A36	B3901 B3902		B71 B72				DQ1	Ú	
A36 A43	B3902 B17		B72 B73				DQ5 DQ6	-	
A43 A80	B17 B57		В73 В78				DQ8 DQ2		
A00	B58		B78 B81				DQ2 DQ3		
	B18		B82				DQ7		
	2.5		B83				DQ8		
			BW4				DQ9		
			BW6				DQ4		
Super Broads	Broads	with splits	Broa	ds no sp	lits		Splits		

Await cRF% result Select ABO blood group

Add antibody specificities

Antibody can be a major barrier to transplantation. Antibody detection and definition of unacceptable antigens is a balance between ensuring good outcomes and not limiting the chances of an offer.

Median wait to transplant for adult patients

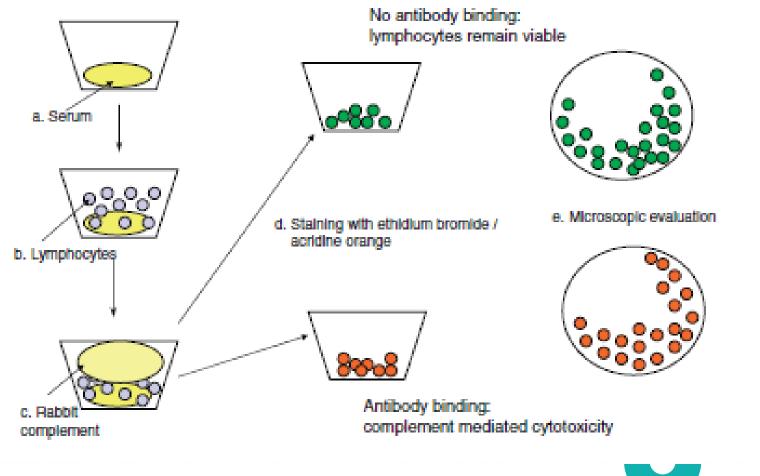
NHS Blood and Transplant

Calculated	Number of patients	Waiting	g time (days)
Reaction	registered	Median	95% CI
Frequency			
0-84%	7917	963	942 - 984
85-94%	344	1577	1487 - 1667
95-99%	377	2138	1870 – 2406
100%	164	2424	2072 – 2776
TOTAL	8802	1016	995 - 1037

> 6½ years

 $2\frac{1}{2}$ vears

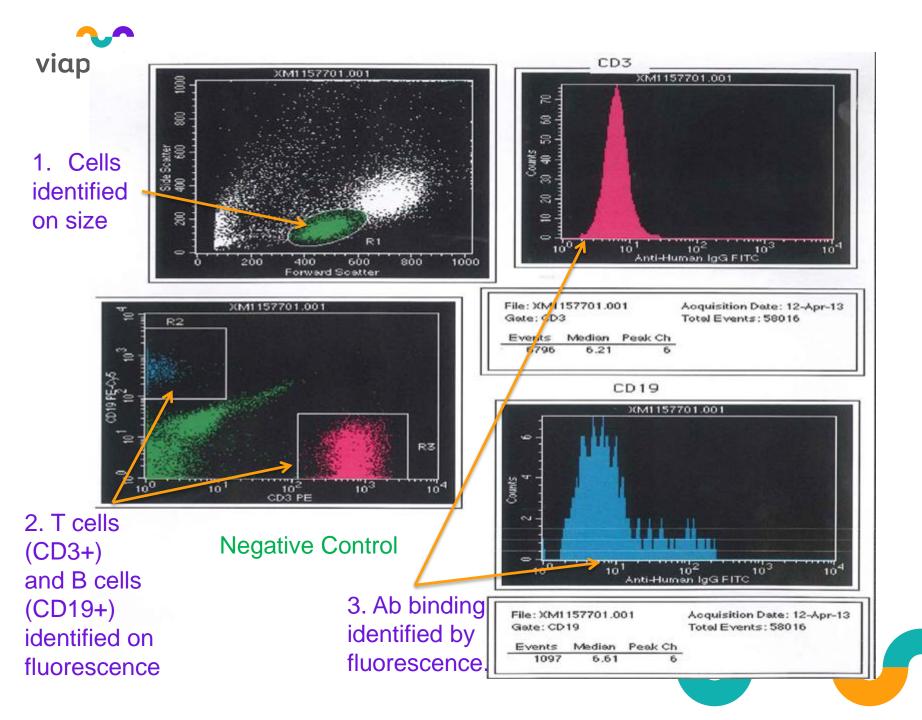
Crossmatching:


- This is the final compatibility test.
- One cell antibody screen
- Detects antibody in a patient specific to a given donor.
- Patient serum vs donor lymphocytes
 - Living donor PBLs
 - Deceased donor PBL, Spleen or Lymph node
- Two main methods CDC and Flow Cytometry

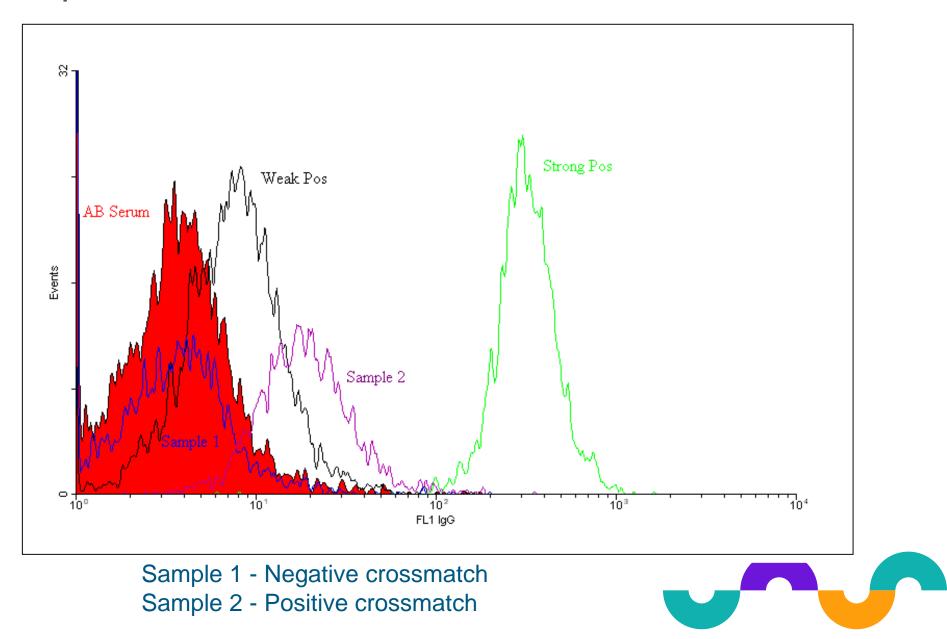
Complement Dependent Cytotoxicity Method

The Complement Dependent Cytotoxicity Test

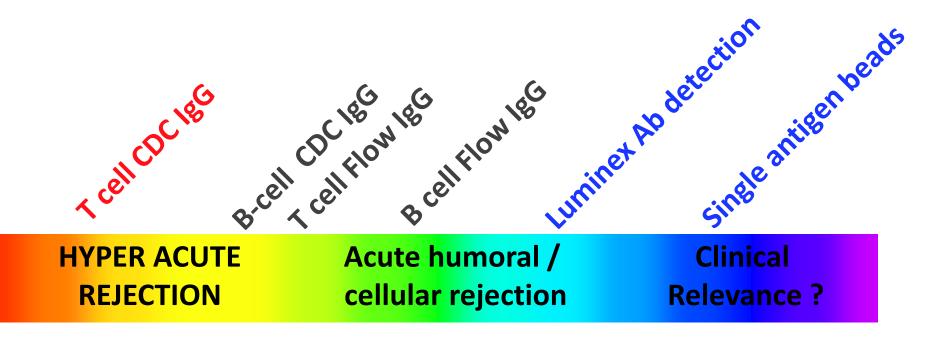
Fuggle SV, and Martin S. Transplantation 86 (3): 384-390


Flow Cytometric Methods:

•Still cell based but reportedly up to 50 x more sensitive than CDC. •Uses target donor derived lymphocytes


•Lymphocytes incubated with recipient sera.

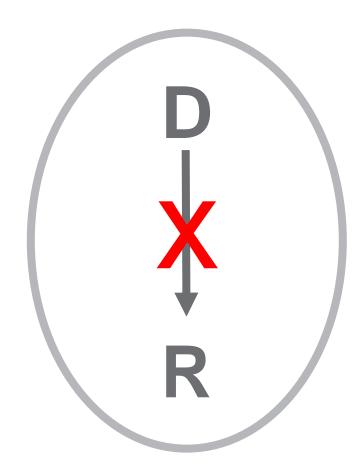
- •Ab bound to targets on test cells is detected through addition of a fluorescence labelled secondary Ab.
- •This is then detected and quantified using a flow cytometer.
- •Fluorescence in test compared to that in negative control and deviation from this assessed against predefined cut off to assign positive or negative result.
- •Centre specific based on clinical protocol, clinicians and historical transplant outcome data
- •Screening methods now mean very few unexpected positive crossmatches.
- •Important for deceased donors as reduces the cold ischaemia time.


viapath

How does this define risk?

- Results of HLA typing, antibody screening history and crossmatching together help define the immunological risk of a potential transplant.
- Both current and historical results must be used together to aid assessment.

Based on - J Andrew Bradley, Craig Taylor, Cambridge, UK


Assessment Summary:

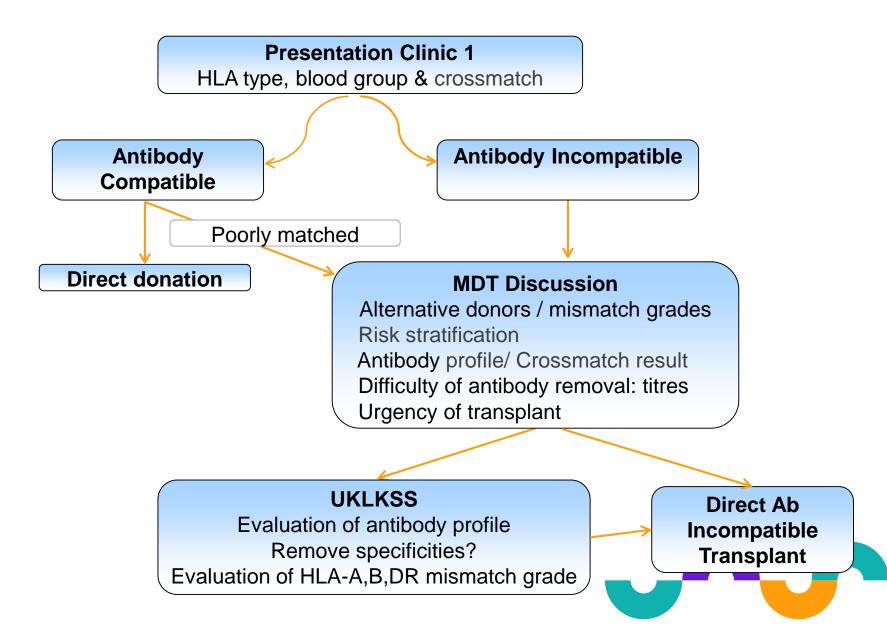
- Compatible blood group is necessary.
- HLA typing and matching better the match the better the long term graft survival.
- HLA Antibody screening avoid donors with HLA antigens to which there are pre-formed antibodies in the recipient.
- Crossmatching avoid transplantation in the face of a positive crossmatch due to HLA specific antibody.
- These apply equally to deceased and living donation routes.
- For patients with incompatible but otherwise healthy living donors what are the options?

Living kidney donation Potential Donor-Recipient pair

Approx 20-30% of possible living donor transplants in the UK are prevented due to -

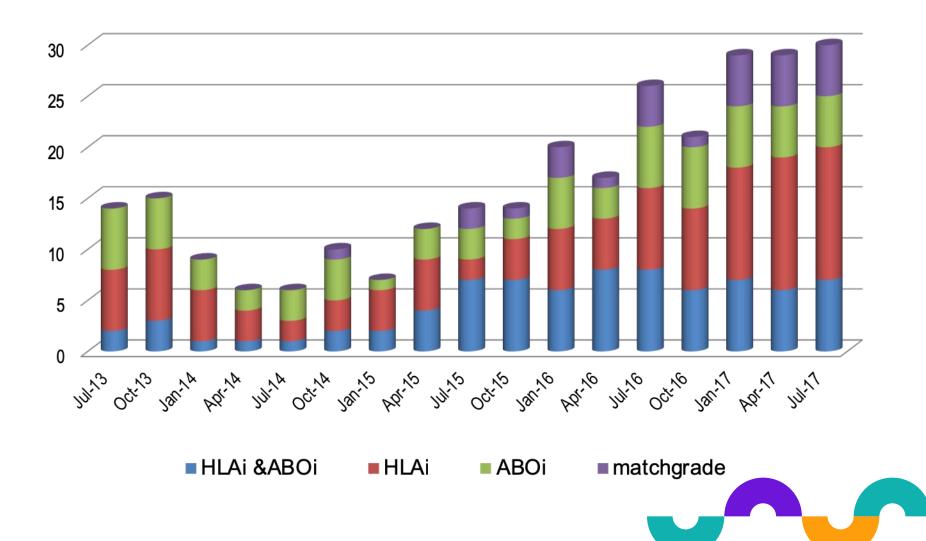
Blood group incompatibility

HLA antibody incompatibility

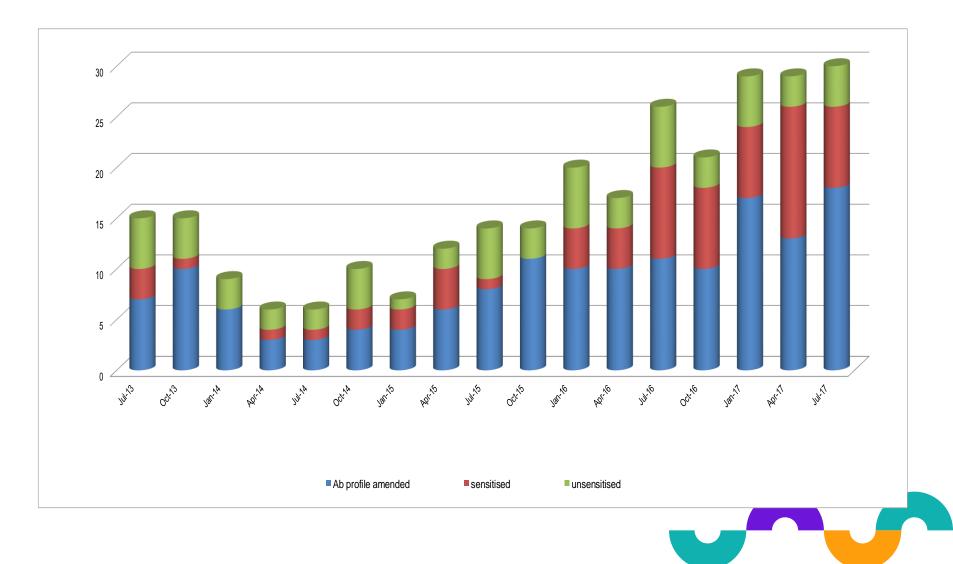

- Positive crossmatch

Poor HLA match

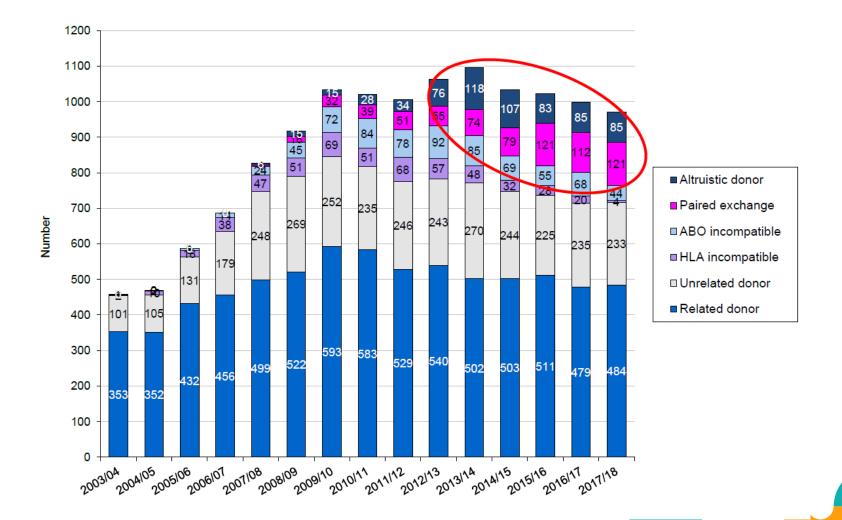
LKDSS now helps to improve the chances of transplant.



viαpαth Multidisciplinary Team Flowchart



Patient/donor demographics per matching run:



Patient HLA Sensitisation status per matching run

UK Living Kidney Transplants

Helping Patients Understand Their Chance of Transplant

Incompatible Pairs Living Donor Kidney Application

Variable	Select
Recipient Blood Group	A
Calculated Reaction Frequence	y 85-94 🔽
Donor Blood Group	0
ABOi TX with willing Donor†	Select 💌
HLAi TX with willing Donor†	Select 🗨
Recipient Age	Select
	Reset

Estimated Chance of Transplant

	Deceased Donor	NLDKSS	ABOi	HLAi
6 Months	<10%	41-50%	-	-
1 Year	11-20%	71-80%	-	-
3 Years	41-50%	>90%	-	-

Transplant Survival Rates

	Deceased Donor	NLDKSS	ABOi	HLAi
6 Months	-	-	-	-
1 Year	-	-	-	-
3 Years	-	-	-	-

Disclaimer: The information is provided for guidance only

⁺Low titre/Low DSA means acceptable for incompatible transplant. High titre/High DSA means unacceptable for incompatible transplant. **Note**: NLDKSS chance of transplant is based on paired donation including short altruistic donor chains. Chances of transplant through the NLDKSS could be increased by considering an antibody incompatible transplant within the scheme

For a more accurate estimate of waiting time for a deceased donor transplant based on more variables, please visit http://www.odt.nhs.uk/doc/chance_of_transplant.xls

Available at: http://www.odt.nhs.uk/transplantation/guidance-policies/tools

The UKLKSS is a valuable addition to a living donor transplant programme

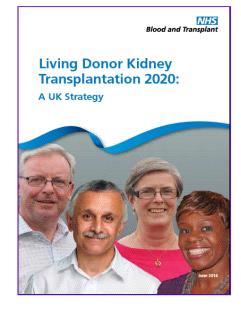
- increased opportunity for highly sensitised patients
- enables better HLA matching between donors and recipients

www.organdonation.nhs.uk

Acknowledgements

Prof Susan Fuggle

NHS Blood and Transplant


Lisa Burnapp, Rachel Johnson, Lisa Mumford, Matthew Robb, Chloe Brown, Iain Harrison, Lin Shelper, David Clegg, Debbie West

University of Glasgow (matching algorithms) David Manlove, Peter Biro, Gregg O'Malley, James Trimble

Transplant centres and referring renal units

Kidney Advisory Group

LDKT 2020 Strategy Implementation Group Aisling Courtney (Chair) and members

"To match world class performance in living donor kidney transplantation"

