

When should I transfuse platelets and plasma for children?

Dr Liz Chalmers

Consultant Paediatric Haematologist Royal Hospital for Children Glasgow

When should I transfuse platelets and plasma in children?

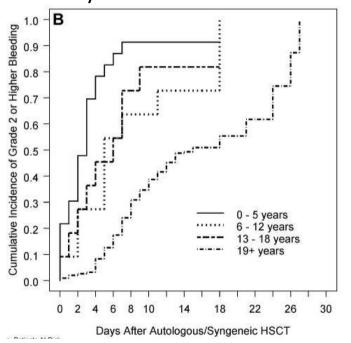
1. Platelet Transfusion in children:

- Background
- Evidence & uncertainties
- Recommendations

2. FFP use in neonates & children:

- Background
- Evidence & uncertainties
- Recommendations

Platelet use in the UK


- Increasing use of a scarce resource
 - 25% increase between 2007/8 2014/15 (England all ages)
- Paediatric clinical settings
 - Haematology-oncology, cardiac surgery, PICU
- Therapeutic vs Prophylactic use
 - Prophylaxis : 60%
- Efficacy
 - Historical & more recent evidence of benefit
 - Optimal use not well defined
 - Prophylaxis strategies, Thresholds, Doses
- Safety consequences of inappropriate use
 - Adverse reactions, platelet refractoriness, blood product exposure

Platelet Support: Evidence

- Evidence base limited:
 - Significant extrapolation from adult studies
 - Consensus opinion
- Recent systematic reviews & other studies -
 - Prophylactic vs transfusion only strategies support prophylaxis
 - Thresholds may vary between individuals & disease groups
 - Platelet dose lower dose may be as effective but may require more frequent transfusion

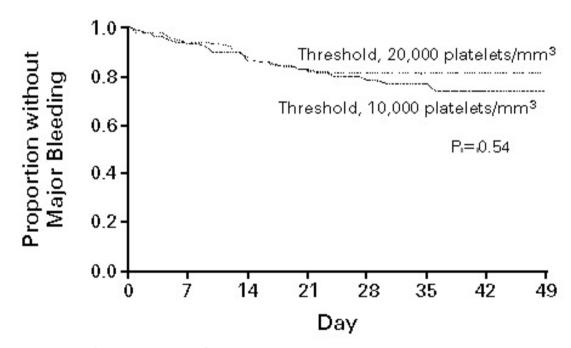
Platelet Support: Evidence

- PLADO study (post hoc paediatric subgroup)
 - Children (n=198) with treatment induced hypoproliferative thrombocytopenia
 - Daily haemostatic assessment

Age range	≥ Grade 2 bleeding
Child 0-5 yrs	86%
Child 6-12 yrs	88%
Child 13-18 yrs	77%
Adult	67%

- Higher risk of bleeding in children vs adults
- More days with ≥ Grade 2 bleeding
- Risk highest in the autologous HSCT group
- Bleeding occurred at a range of counts

Josephson, Blood 2012


Platelet Thresholds: Survey of Practice in ALL 2014

What is your usual threshold for platelet transfusion in the following groups of children/adolescents with ALL?

	10 x 10 ⁹	20 x 10 ⁹	30 x 10 ⁹	50 x 10 ⁹	70-80 x 10 ⁹	100 x 10 ⁹
Well patient	88.9%	11.1%	0.0%	0.0%	0.0%	0.0%
Febrile patient	15.8%	84.2%	0.0%	0.0%	0.0%	0.0%
Patient with bleeding	0.0%	0.0%	16.7%	66.7%	11.1%	5.6%
Prior to LP	5.3%	10.5%	26.3%	52.6%	5.3%	0.0%
Prior to CVL Insertion	0.0%	0.0%	0.0%	52.6%	36.8%	10.5%

Platelet Support: Evidence

- Well patient with no bleeding
- Rubella, N Engl J Med 1997Adults & adolescents with AML
- Threshold of 20 x10⁹ vs 10 x 10⁹

Supported by Cochrane Systematic Review 2015 – low quality evidence

Platelet Support: Evidence Prior to LPs

- Cochrane review 2016
 - No evidence from RCTs to determine the correct threshold
 - Would likely require a very large study
- Cohort study data support safety of lower thresholds
- van Veen BJH 2010 Review concluded platelet count of 40 x10⁹ was safe for LPs
- Howard et al JAMA 2000
 - 941 LPs in Children with ALL
 - Variable platelet counts majority: 21-50 x10⁹/l
 - No serious bleeding events
 - CI calculated for different thresholds

Platelet Support: Evidence Prior to CVL Insertion

- Cochrane review 2010
 - No RCT evidence on platelet support or thresholds pre CVL insertion
- Most guidelines recommend a platelet count of 50x10⁹/l
- Zeidler et al 2011
 - Adult study n= 193
 - 604 CVL placements
 - Un-tunnelled CVL

Platelet count (x10°)	OR	95% CI	(p value)
< 20	2.88	1.23-6.75	(0.015) *
20-49	1.27	0.77-2.18	(0.38)
50-99	1.60	0.98-2.63	(0.062)
>100	1.0	-	

^{*} Significant bleeding only in those with platelets < 20

Zeidler K, Transfusion 2011

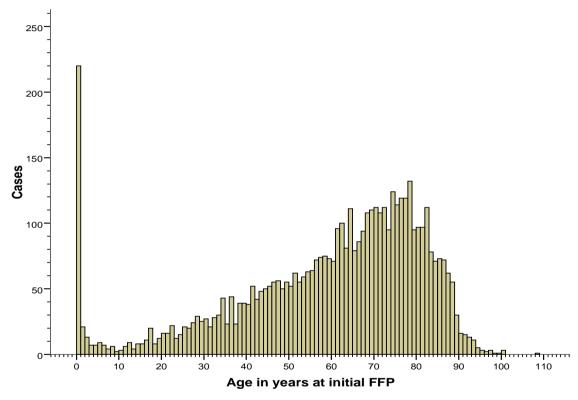
BSH Paediatric Transfusion Guidelines :2016

Platelet count (x 10 ⁹ /l)	Clinical situation to trigger platelet transfusion
< 10	Irrespective of other issues (excluding ITP, TTP/HUS, HIT)
< 20	Severe mucositis
	Sepsis
	Laboratory evidence of DIC in the absence of bleeding*
	Anticoagulant therapy
	Risk of bleeding due to a local tumour infiltration
	Insertion of a non-tunnelled central venous line
< 40	Prior to lumbar puncture**
< 50	Moderate haemorrhage (e.g. gastrointestinal bleeding) including bleeding in association with DIC
	Surgery, unless minor (except at critical sites)
	-including tunnelled central venous line insertion
< 75 -100	Major haemorrhage or significant post-operative bleeding (e.g. post
	cardiac surgery)
	Surgery at critical sites: central nervous system including eyes

FFP use in neonates & children

- FFP use static or increasing
 - 4% increase in use documented in UK audit (Stanworth 2011)
- Evidence base for FFP currently inadequate
 - Lack of supporting evidence for many indications
 - Variations in clinical practice
 - Range of FFP use 0.99 5.84% (*Puetz, 2012*)
 - Data suggest some use likely ineffective/inappropriate

Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials


Lucy Yang, Simon Stanworth, Sally Hopewell, Carolyn Doree, and Mike Murphy Transfusion 2012

CONCLUSION: Combined with the 2004 review, 80 RCTs have investigated FP with no consistent evidence of significant benefit for prophylactic and therapeutic use across a range of indications evaluated.

UK Paediatric and neonatal FFP transfusions

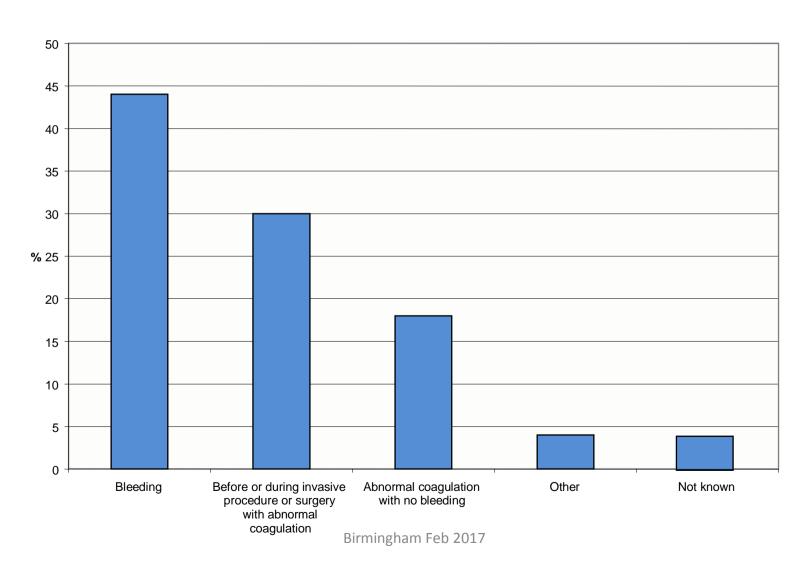
FFP National Comparative Audit 2009

Age ranges: 4635 - 16+; 114 - 1-15 yrs; 220 < 1 yr

EASTR study, 2016

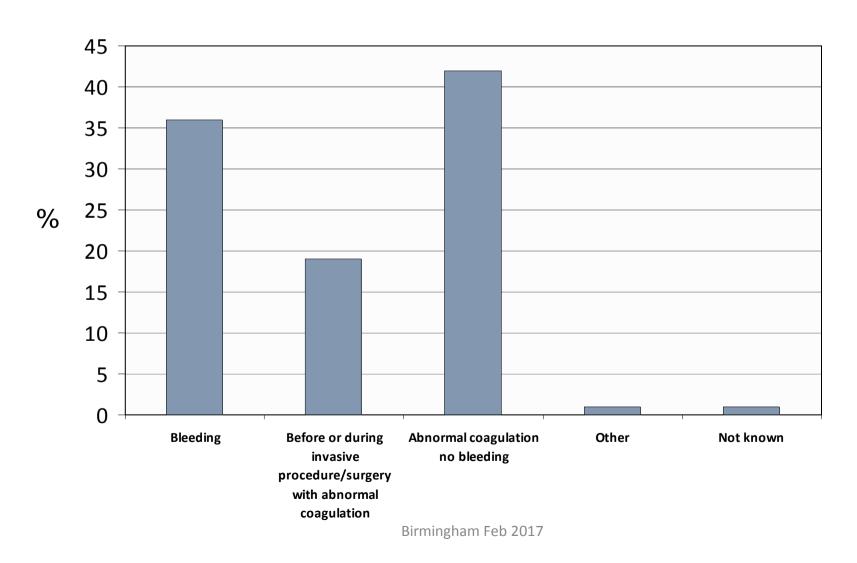
http://hospital.blood.co.uk/media/26877/nca-audit of ffp elsewheres2009.pdf

Stanworth et al, Transfusion 2011


- •9% of FFP recipients paediatric (<16 yrs)
- •63% of paediatric FFP recipients < 1yr of age

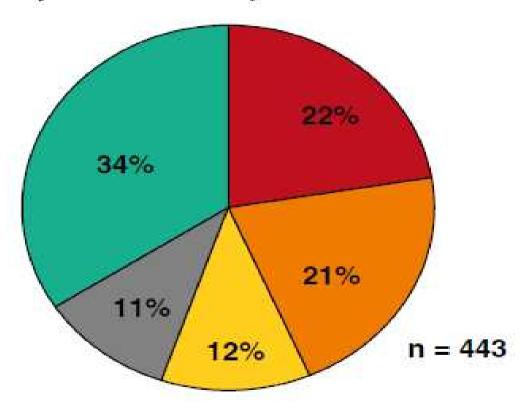
Birmingham Feb 2017

FFP National Comparative Audit 2009


Age ranges: 16yrs+ (4635) 1-15 yrs (114) < 1 yr (220; 4%)

Main reason for transfusion in Children (1 – 15 yrs old)

FFP National Comparative Audit 2009


Main reason for transfusion in Infants (< 1 yr old, n=220)

Indications and Effects of Plasma Transfusions in Critically III Children

Oliver Karam^{1,2}, Pierre Demaret³, Alison Shefler⁴, Stéphane Leteurtre^{2,5}, Philip C. Spinella⁶, Simon J. Stanworth⁷, Marisa Tucci⁸; on behalf of the Canadian Critical Care Trials Group (CCCTG), Pediatric Acute Lung Injury and Sepsis Investigators (PALISI), BloodNet, and the PlasmaTV Investigators*

Primary indication for plasma transfusion

■ Critical bleeding ■ Minor bleeding ■ Preparation
■ Post-op risk of bleeding ■ No bleeding, no procedure

FFP Use in infants: UK National Comparative Audit 2011

- Median INR pre FFP
 - Children with bleeding 1.5 (1.2-1.9)
 - Children with no bleeding 1.6 (1.2-1.8)
- Is this predictive of bleeding?

Coagulation Screening – PT & APTT

- •Initially developed as tests for patients with a high pretest probability of coagulation factor deficiency
- •PT/APTT became screening tool to predict bleeding risk in a variety of clinical situations

Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review

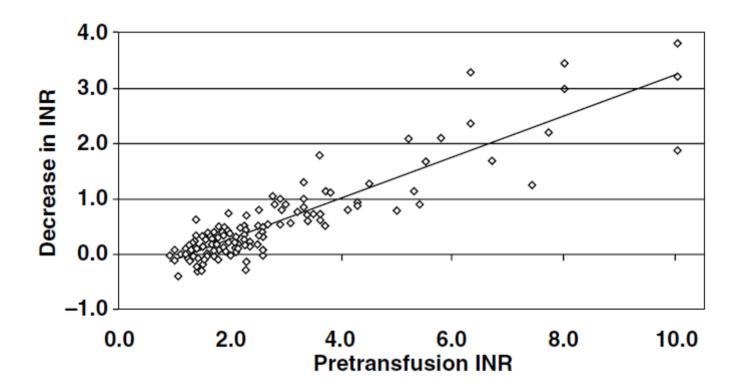
Volume 45, September 2005 TRANSFUSION 1413

Jodi B. Segal and Walter H. Dzik on behalf of the Transfusion Medicine/Hemostasis Clinical Trials Network

Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities

Volume 46, August 2006 TRANSFUSION 1279

Omar I. Abdel-Wahab, Brian Healy, and Walter H. Dzik


•Pre-transfusion INR 1.1 – 1.85

Normalisation of PT/INR: 0.8%

•Reduction in INR (50%): 15%

Median decrease in INR: 0.2 sec

PT/INR

Neonatal Haemostasis

Defining abnormal coagulation in neonates

AGE	I, V, VIII/vWF			Vitamin K-dependent factors (U/ml)			Contact factors (U/ml)				
	I	٧	VIII	vWF	II	VII	IX	Х	XI	XII	XIII
ADULT	3.40	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Term (37-41 WEEKS)	2.40	1.00	1.50	1.60	0.52	0.57	0.35	0.45	0.42	0.44	0.61

- Coagulation parameters are affected by gestational/postnatal age
- Physiological prolongation of PT and APTT in neonates
- Age adjusted normal ranges
- Problems of defining normal ranges and interpreting results

Andrew, 1988

Preterm normal ranges

		Post natal age	
Test	Day 1	Day 5	Day 30
PT (secs)	13.0 (10.6-16.2)	12.5 (10.0-15.3)	11.8 (10.0-13.6)
APTT (secs)	53.6 (27.5-79.4)	50.5 (26.9-74.1)	44.7 (26.9-62.5)
Fibrinogen (g/l)	2.43 (1.50-3.73)	2.80 (1.60-4.18)	2.54 (1.50-4.14)

Figures for healthy preterm infants (30-36 weeks gestation) during the first month of life.

Data from M. Andrews et al, 1988, 1990. All infants had had vitamin k

BSH recommendations - neonates

- FFP may be of benefit in neonates with clinically significant bleeding (including massive blood loss) or prior to invasive procedures with a risk of significant bleeding, and who have an abnormal coagulation profile
 - PT/APTT significantly above the normal gestational and postnatal agerelated reference range (taking into account local reference ranges where available) (2C)
- There is no evidence to support the routine use of FFP to try to correct abnormalities of the coagulation screen alone in non-bleeding neonates (1C)
- FFP should not be used for simple volume replacement or routinely for prevention of IVH (1B).

BSH recommendations - Children

- FFP may be beneficial in children with DIC who have a significant coagulopathy (PT/APTT >1.5 times the mid-point of the normal range or fibrinogen <1g/l) associated with clinically significant bleeding or prior to invasive procedures.
- Early use of FFP is also recommended in the management of major haemorrhage
- FFP should not be administered to non-bleeding children with minor prolongation of the PT/APTT (including prior to surgery unless to critical sites)
- Other specific indications: TTP; coagulation deficiencies; vitamin K deficiency bleeding

Platelet & FFP transfusions in Children: Conclusions

- Optimal strategies for platelet use in children remain to be defined thresholds recommended for treatment & prophylaxis
 - Thresholds largely unchanged from previous guideline
- Doubt exists on the efficacy of FFP in a range of settings & there is evidence to suggest inappropriate
 - Extensive use in non-bleeding children with abnormal coagulation
 - Poor predictive value of PT/APTT to predict bleeding
 - Problems defining abnormal coagulation in neonates
 - Limited correction of abnormal parameters by FFP
- Likely that more restrictive use would be appropriate
- Clear need for ongoing research