

What about anaemia in small infants and neonates?

Dr Ruth Gottstein
Consultant Neonatologist
Saint Mary's Hospital, Manchester
28th January 2016

Overview

- 1. Background
- 2. Anaemia of prematurity
- 3. Top-up Red Cells transfusions RCTs
- 4. BCSH 2016 Recommendations

Physiology

- ♦ Normal Hb @ birth 140 200g/L (avg 170g/L)
- ♦ Decreases to 110g/L (preterm to 70-80g/L) over 3-4months =

"physiological anaemia of infancy"

♦ MCV decreases

- 100-130fl @ birth → 70-85fl @ 1yr
- ♦ Lifespan of RBC
 - Adult 100-120 d
 - Term 80-100 d
 - Preterm 60-80 d

Anaemia of Prematurity

♦ 80% of infants with b.wt <1.5kg are transfused</p>

♦ Multifactorial

- ♦ latrogenic blood loss
- ♦ Low circulating blood volume
- ♦ Relative low intrinsic EPO levels
- ♦ Relative shorter RBC survival
- ♦ Inadequate erythropoesis
- ♦ Haemorrhage
- ♦ Haemolysis

SEMINARS IN PERINATOLOGY

International Survey of Transfusion Practices for Extremely Premature Infants

Úrsula Guillén, MD,* James J. Cummings, MD,[†] Edward F. Bell, MD,[‡] Shigerharu Hosono, MD, PhD,[§] Axel R. Frantz, MD,[¶] Rolf F. Maier, MD,** Robin K. Whyte, BSc, MBBS,^{††} Elaine Boyle, MRCP,^{‡‡} Max Vento, MD, PhD,^{§§} John A. Widness, MD,[‡] and Haresh Kirpalani, BM, MSc^{¶¶} Semin Perinatol 36:244-247 © 2012

- 1018 neonatologists,
- 11 countries
- scenarios for neonates < 1000g bw and/or < 28 wks gestational age

Thresholds for Transfusion 14 13 12 10 10 9 No Support FiO₂ < 30%, FiO₂ > 30%, CPAP, SIPAP, Mechanical Ventilation (2LPM 2LPM 8iPAP, n/MV Ventilation

Figure 1 Thresholds for red cell transfusion for infants weighing <1000 g at birth and/or <28-week GA for each of the first 4 weeks of life given 5 different levels of respiratory support. Each box represents the interquartile range (25th-75th percentile). The median value intersects each box.

The RCT evidence

Iowa study

- 100 preterm infants, b.wt. 0.5-1.3kg
- Hb stratification: respiratory status
 - Intubated113g/l vs 153 g/l
 - O₂ or distending pressure
 93g/l vs 127g/l
 - No respiratory support
 73g/l vs 99g/l
- Primary endpoint: difference in transfusion number

Bell et al *Pediatrics* 2005:115;1685-1691

The RCT evidence

PINT (Preterm Infants in Need of Tx)

- 451 ELBW infants < 48hrs age (<1kg)
- Hb stratification
 - respiratory status and postnatal age
 - Assisted vent; Postnatal wk 1: 115g/l vs 135

 - . wk 3 until discharge: 85g/l vs 100g/l
- Composite clinical outcome
 - No significant difference in death, CLD, ROP, brain injury, lab outcomes

Kirpilani et al *J Paediatr* 2006:149;301-7

Outcomes

	Iowa (n=100)	PINT (n=451)
Mean Hb g/dl	8.3 vs 11.0	10.1 vs 11.2
No transfusion	10% vs 12%	5% vs 11% p 0.037
Death/brain injury	16% vs 2%	31% vs 31%
Longer term	Approx 12 yr: Brain volumes in liberally transfused smaller than controls McCoy et al., 2011	18-21 mth -cognitive delay in restrictive group post hoc Whyte et al., 2009

Mortality

	Low thre	shold	High the	reshold	1	Risk ratio	Ris	sk ratio	
Study or subgroup	Events	Total	Events	Total	Weight(%)	M-H, Fixed, 95% CI	M-H, F	ixed, 95% CI	
Bell et al (2005)	2	49	1	50	2.3	2.04 [0.19, 21.79]	÷	 • 	
Brooks et al (1999)	0	24	0	26		Not estimable			
Chen et al (2009)	1	17	2	19	4.5	0.56 [0.06, 5.63]			
Kirpalani et al (2006)	48	223	40	228	93-2	1-23 [0-84, 1-79]			
Total (95% CI)		313		323	100-0	1-22 [0-84, 1-75]		•	
Total events	51		43						
Heterogeneity: $\chi^2 = 0$	62, df = 2	(P = 0	73); F = ()%				+ +	
Test for overall effect	Z = 1.05	(P = 0.3)	90)			0-01 Favours	0-1 low threshold	1 10 Favours hig	100 ih threshold

Venkatesh V..... Stanworth S. Br J Haematol. 2012;158, 370-385.

Small volume RBC transfusion RCTs

Iowa study

- 100 preterm infants, b.wt. 500-1300g
- Hb stratification: respiratory status
- Primary endpoint: difference in transfusion number
 Bell et al Pediatrics 2005:115;1685-1691

PINT

- 451 ELBW infants < 48hrs age (<1000g)
- Hb stratification
 - respiratory status and postnatal age
- Composite clinical outcome

Kirpilani et al *J Paediatr* 2006:149;301-7

Chronic Lung Disease (CLD)

	Low thre	shold	High thre	eshold		Risk ratio	Risk ratio		
Study or subgroup	Events	Total	Events	Total	Weight(%)	M-H, Fixed, 95% CI	M-H, Fixed, 95	5% CI	
Bell et al (2005)	13	45	20	50	13-4	0.72 [0.41, 1.28]			
Brooks et al (1999)	16	24	21	26	14.2	0.83 [0.59, 1.16]	7		
Chen et al (2009)	5	19	3	17	2.2	1.49 [0.42, 5.33]	<u> </u>		
Kirpalani et al (2006)	101	175	103	188	70-1	1.05 [0.88, 1.26]			
Total (95% CI)		263		281	100-0	0-99 [0-84, 1-15]	•		
Total events	135		147						
Heterogeneity: $\chi^2 = 3$	11, df = 3	P = 0	37); $l^2 = 4$	%			1	10	-
Test for overall effect	Z = 0·17	(P = 0·l	36)			0-01 Favours k	0-1 1 ow threshold Favo	10 ours high three	100 shold

Venkatesh V..... Stanworth S. Br J Haematol. 2012;158, 370-385.

What's on the horizon?

- Effects of Transfusion Thresholds on Neurocognitive Outcome (ETTNO)
 - 920 VLBW infants randomised from 2011
- Primary outcome: Incidence of death or major neurodevelopmental impairment @ 24 months CA
- major neurodevelopmental impairment is defined as cognitive delay defined as mental developmental index (MDI) score of the Bayley 2 Scales < 85, cerebral palsy, or severe visual or hearing impairment
- Expected completion of study July 2017

BCSH 2016 recommendations

Postnatal age	Suggested transfusion threshold Hb (g/L)					
	Ventilated	On oxygen /CPAP	Off oxygen			
1st 24 hours	< 120	< 120	< 100			
≤ week 1 (day 1-7)	< 120	< 100	< 100			
week 2 (day 8 - 14) ≥ week 3 (≥ day 15)	< 100	< 95 < 85	< 75 - 85 depending on clinical situation			

Neonatal Transfusions - Key practice points

- 1. Hospitals should develop policies which help to minimise exposure to multiple donors.
- 2. Minimise phlebotomy where possible.

Have a local policy on the frequency and types of regular blood tests required, using small samples and small volume laboratory analysers, and near patient testing. Use of cord blood for initial blood tests may be considered (Baer et al, 2013).

Neonatal Transfusions - Key practice points

3.Hospital policies should ensure that paedipacks are available for emergency use by maternity and neonatal units. The laboratory should be notified once they have been used.

! How!to!order!blood!on!the!NICU:

Minimising'blood'donor'exposure'is'key'to'good'blood'transfusion'practice."On' ICE'request''neonatallpacks''instead'of'the'volume'of'blood'(mls).'A'single'donor' unit'is'split'into'6''neonatal'packs','also'called''paedipacks''and'have'a'shelf'life' of'approx.'30'days.'Therefore'there'is'no'need'to'send'a'G&S'sample'every'time' a'baby'needs'a'transfusion'until'these'have'all'been'used'or'expired.'

Blood transfusion for New Admissions!: !

- Take'group'and'save'sample'in'REDIEDTA bottle'(approximately'0.75ml)'
- 2. Handwrite'label'with'Name, IDOB, Idistrict Inumber (038...), Idate, Itime, Isign''
- 3. Do'not'send'until'correct'form'printed'off'ICE...'
- 4. On'ICE:
 - Select''Neonatal/Haem'Blood'transfusion''tab'under'Neonate'requests'
 - Click'provide''Red'cells'''
 - Iflb.wt.!<900g' 'type' 6' in' the' first' box' (total' quantity' needed)'
 and' select' neonatall pack' from' the' drop' down' menu' (type' of'
 product' required)'
 - Iflb.wt.!>900g'-'type!3' in'the' first' box' (total' quantity' needed)'
 and' select' neonatall pack' from' the' drop' down' menu' (type' of'
 product'required)'
 - Enter'the'patient's'birth'weight'
 - Special'Requirements:'
 - CMV!negative'(for'all'aged'<1'yr)'
 - o **Irradiated**' only' if' previous' IUT,' Exchange' Transfusion' or' ?DiGeorge''
- 5. Print'off'form, 'sign'and'date'
- 6. Check! the EDTA! sample! is! correctly! labelled! with! another! health! professional who will known tersign the form!
- $7. \ \ Send' form'together' with 'RED'EDTA' blood's ample 'obtained'$

Blood!transfusion!for!NICU!Inpatients:!

- Ask'the'Nurse'to'check'on'Blood'Track'to'see'if'neonatal'packs'are'already' available'—'if'so.'there'is'no'need'to'contact'transfusion'lab.'
- 2. If 'no' packs' available'—' order' blood' as 'described' in' the 'steps' above.' If 'a' blood' sample' in' the 'lab' is 'less' than' 6' days' old, 'it' may' be' used' for 'cross' matching' and 'a'new' sample' may 'not' be' required.' Phone 'the 'lab' to 'ask.'

Transfusion tips

- blood suitable for neonates:
 - CMV negative
 - Donors have to have donated at least once previously (within 2 years)
- Red cells expire 35 days after donation
 - NHSBT need to test it and might not release it for a few days
- 6 paedipacks from one adult donor unit

25 26 27 28 29 30 31

Neonatal Transfusions - Recommendations

- 1. Studies to date support restrictive transfusion thresholds (2B)
- 2. Transfusion volumes of 15mL/kg are generally recommended for non-bleeding neonates (2C)
- 3. The routine use of EPO or Darbepoetin is not recommended in preterm infants (1B)
- 4. Where a term (1B) / preterm (2C) neonate does not require resuscitation, undertake delayed cord clamping

Acknowledgement: BCSH 2016

Writing group:

New HV¹, Berryman J², Bolton-Maggs PHB³, Cantwell C⁴, Chalmers E⁵, Davies T⁶, Gottstein R⁷, Hennem S⁸, Kelleher A⁹, Kumar S¹⁰, Morley SL¹¹, Stanworth SJ¹²

- 1. NHSBT/Imperial College London; 2. UCH, 3. NHSBT, Manchester/TTF member;
- 4. Imperial College London; 5. Glasgow Hospital for Women and Children;
- 6. NHSBT, Manchester; 7. St. Mary's Hospital, Manchester; 8. GOS, London;
- 9. Royal Brompton, London; 10. Imperial College, London/Mater Research Institute, University of Queensland, Australia; 11. Addenbrookes Hospital/NHS Blood and Transplant, Cambridge; 12. Oxford University Hospitals /NHSBT, Oxford.

GRADE - BCSH guidelines

Grading of Recommendations Assessment, Development and Evaluation.

GRADE nomenclature for

•levels of evidence (A-D)

and

•the strength of recommendations (1, 2)

GRADE: Strength of Recommendation

Strong (grade 1) recommendations - clinicians are very certain that benefits do, or do not, outweigh risks and burdens. Where words such as "recommend", "offer" and "should" are appropriate.

Weak (grade 2) recommendations - clinicians believe that benefits, risks and burdens are finely balanced, or appreciable uncertainty exists about the magnitude of benefits and risks.

GRADE: Levels of Evidence

- (A) High: Further research is very unlikely to change our confidence in the estimate of effect.
- (B) Moderate: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
- (C) Low: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
- (D) Very Low: Any estimate of effect is very uncertain.