Venous Access Considerations for Apheresis Procedures

Venous Access Type	Considerations			
Peripheral veins	 Preferred option. Veins need to support a 16 or 17G fixed dialysis-type needle for blood draw at negative pressure up to -25mmHg. May not be possible to support consecutive treatments. Patient unable to move arm being used for blood draw for up to 5hrs Draw needle must be place in cubital fossa therefore avoid blood sampling from here if apheresis requested 			
Large lumen CVC	 Best CVC option Allows for good steady blood flow rates and shorter procedure times Higher associated risks related to care and placement (infection; pneumothorax) Greater requirements for line locking to ensure patency (Heparin) Prone to occlusion problems due to biofilm/fibrin sheath/pinch off/kinking 			
Combination of central plus peripheral access	 Used for return flow when existing long term CVCs present (e.g. Hickman line in haematology patients) Not normally suitable for blood draw into apheresis machines and may not take return flow speeds set by the cell separator resulting in longer procedures 			
Implantable ports	Port capable of supporting apheresis (e.g. Vortex port) is available but is not licensed for apheresis use			
Arterio-Venous Fistula (AVF)	 Permanent option for consideration in lifelong/long-term treatments or be pre existing fistula e.g. dialysis patients Will allow single arm procedures without increasing procedure time Greater requirements for establishing haemostasis Risk of stenosis 			
Gore-tex Grafts	 Permanent option for consideration in lifelong/long-term treatments or use of pre existing graft e.g. dialysis patients Can be used for draw and return without increasing procedure time Greater requirements for establishing haemostasis Risk of thrombosis and infection Not routinely used but may be pre existing in renal patients or appropriate where previous AVFs have failed. 			

Peripheral Vascular Cannula Details

Course Size	Length	Flow	Rate
Gauge Size	mm(in)	ml/min	L/hr
16	30	220	13.2
18	30	105	6.0
10	50	60	3.6
20	30	60	3.6

Size	Length cm(in)	Lumens	Lumen size/vol	Flow Rate
12Fr	16 (6)	Proximal Distal	12ga 12ga	23.7 L/hr 17.4 L/hr
12Fr	20 (8)	Proximal Distal	12ga 16ga	19.8 L/hr 15.5 L/hr
13.5Fr	28 (12)	Proximal Distal	2.0mm 2.0mm	> 400ml/min
14.5Fr	32 (13)	Proximal Distal	1.6ml 1.7ml	>500ml/min

Examples of Wide Bore Haemodialysis Catheter Suitable for Apheresis

CVC Type and Manufacturers

Name	Description	Manufacturer	Link
Quinton™ Permacath™	Dual Lumen Catheter	Covidian	http://www.kendallvasculartherapy.com/pagebuilder.aspx?webPageID=108296
Hickman®	Dual Lumen Dialysis Catheter	Bard	http://www.bardaccess.com/
Bioflex [™] Tesio®	Dual Lumen Catheter	Medcomp	http://www.medcompnet.com/
Neostar®	CV Catheter Dual or Triple Lumen	AngioDynamics	http://www.hmpvascular.com/
Mahukar®	Cuffed Catheter	Covidian	http://www.kendallvasculartherapy.com/pagebuilder.aspx?webPageID=108296